
Writing an Ice Application with C-Sharp

This page shows how to create an Ice application with C#.

On this page:

Compiling a Slice Definition for C#
Writing and Compiling a Server in C#
Writing and Compiling a Client in C#
Running Client and Server in C#

Compiling a Slice Definition for C#
The first step in creating our C# application is to compile our to generate C# proxies and skeletons. You can compile the definition as Slice definition
follows:

> mkdir generated
> slice2cs --output-dir generated Printer.ice

The option instructs the compiler to place the generated files into the directory. This avoids cluttering the working directory --output-dir generated
with the generated files. The compiler produces a single source file, , from this definition. The exact contents of this file do not slice2cs Printer.cs
concern us for now — it contains the generated code that corresponds to the interface we defined in .Printer Printer.ice

Back to Top ^

Writing and Compiling a Server in C#
To implement our interface, we must create a servant class. By convention, a servant class uses the name of its interface with an -suffix, so our Printer I
servant class is called and placed into a source file :PrinterI Server.cs

C#

using System;

public class PrinterI : Demo.PrinterDisp_
{
 public override void printString(string s, Ice.Current current)
 {
 Console.WriteLine(s);
 }
}

The class inherits from a base class called , which is generated by the compiler. The base class is abstract and PrinterI PrinterDisp_ slice2cs
contains a method that accepts a string for the printer to print and a parameter of type . (For now we will ignore the printString Ice.Current Ice.

 parameter.) Our implementation of the method simply writes its argument to the terminal.Current printString

The remainder of the server code follows in and is shown in full here:Server.cs

https://doc.zeroc.com/pages/viewpage.action?pageId=18262523
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+Java
https://doc.zeroc.com/display/IceMatlab/Writing+a+Slice+Definition
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

1.

2.

3.
4.

5.

6.

C#

public class Server
{
 public static int Main(string[] args)
 {
 try
 {
 using(Ice.Communicator communicator = Ice.Util.initialize(ref args))
 {
 communicator = Ice.Util.initialize(ref args);
 Ice.ObjectAdapter adapter = communicator.createObjectAdapterWithEndpoints
("SimplePrinterAdapter", "default -p 10000");
 Ice.Object obj = new PrinterI();
 adapter.add(obj, ic.stringToIdentity("SimplePrinter"));
 adapter.activate();
 ic.waitForShutdown();
 }
 }
 catch(Exception e)
 {
 Console.Error.WriteLine(e);
 return 1;
 }
 return 0;
 }
}

The body of contains a block in which we place all the server code, followed by a block. The catch block catches all exceptions that may Main try catch
be thrown by the code; the intent is that, if the code encounters an unexpected run-time exception anywhere, the stack is unwound all the way back to Main
, which prints the exception and then returns failure to the operating system.

The object implements , which allows us to use the statement for the initialization of the Ice.Communicator IDisposable using Ice.Communicator
object. This ensures the communicator method is called when the block goes out of scope. Doing this is essential in order to correctly destroy using
finalize the Ice run time.

The body of our block contains the actual server code.try

The code goes through the following steps:

We initialize the Ice run time by calling . (We pass to this call because the server may have command-line Ice.Util.initialize args
arguments that are of interest to the run time; for this example, the server does not require any command-line arguments.) The call to initialize
returns an reference, which is the main object in the Ice run time.Ice.Communicator
We create an object adapter by calling on the instance. The arguments we pass are createObjectAdapterWithEndpoints Communicator

 (which is the name of the adapter) and , which instructs the adapter to listen for incoming "SimplePrinterAdapter" "default -p 10000"
requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have just add add
instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, each would "SimplePrinter"
have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have many activate
servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either by making a call to waitForShutdown
shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper class and,
thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actual application code is Ice.Application
concerned, the server contains only a few lines: seven lines for the definition of the class, plus three lines to instantiate a object and PrinterI PrinterI
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\Assemblies Server.cs generated\Printer.cs

This compiles both our application code and the code that was generated by the Slice compiler. We assume that the environment variable is ICE_HOME
set to the top-level directory containing the Ice run time. (For example, if you have installed Ice in , set to that path.)C:\Ice ICE_HOME

Failure to call on the communicator before the program exits results in undefined behavior.destroy

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class

1.
2.

3.

4.
5.

Back to Top ^

Writing and Compiling a Client in C#
The client code, in , looks very similar to the server.Client.cs

Here it is in full:

C#

using System;
using Demo;

public class Client
{
 public static int Main(string[] args)
 {
 try
 {
 using(Ice.Communicator communicator = Ice.Util.initialize(ref args))
 {
 Ice.ObjectPrx obj = communicator.stringToProxy("SimplePrinter:default -p 10000");
 PrinterPrx printer = PrinterPrxHelper.checkedCast(obj);
 if(printer == null)
 {
 throw new ApplicationException("Invalid proxy");
 }

 printer.printString("Hello World!");
 }
 }
 catch(Exception e)
 {
 Console.Error.WriteLine(e);
 return 1;
 }
 return 0;
 }
}

Note that the overall code layout is the same as for the server: we use the same and blocks to deal with errors. The code in the block try catch try
does the following:

As for the server, we initialize the Ice run time by calling within the statementIce.Util.initialize using
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy "Sim

. Note that the string contains the object identity and the port number that were used by the server. plePrinter:default -p 10000"
(Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. But to stringToProxy Ice.ObjectPrx
actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by calling Printer Object Pr

. A checked cast sends a message to the server, effectively asking "is this a proxy for a interface?" If interPrxHelper.checkedCast Printer
so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other type, the call returns null.Demo::Printer
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored string. printString "Hello World!"
The server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\Assemblies Client.cs generated\Printer.cs

Back to Top ^

Running Client and Server in C#
To run client and server, we first start the server in a separate window:

https://doc.zeroc.com/display/IceMatlab/IceGrid

$ server.exe

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. To "Hello World!"
get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our discussion of .)Ice.Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get something like
the following:

Ice.ConnectionRefusedException
 error = 0
 at IceInternal.ProxyFactory.checkRetryAfterException(LocalException ex, Reference ref, Int32 cnt)
 at Ice.ObjectPrxHelperBase.handleException__(ObjectDel_ delegate, LocalException ex, Int32 cnt)
 at Ice.ObjectPrxHelperBase.ice_isA(String id__, Dictionary`2 context__, Boolean explicitContext__)
 at Ice.ObjectPrxHelperBase.ice_isA(String id__)
 at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b)
 at Client.Main(String[] args)
Caused by: System.ComponentModel.
Win32Exception: No connection could be made because the target machine actively refused
 it

Note that, to successfully run client and server, the C# run time must be able to locate the library. (Under Windows, one way to ensure this is to Ice.dll
copy the library into the current directory. Please consult the documentation for your C# run time to see how it locates libraries.)

Back to Top ^

See Also

Client-Side Slice-to-C-Sharp Mapping
Server-Side Slice-to-C-Sharp Mapping
Application Helper Class
The Current Object
IceGrid

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-C-Sharp+Mapping
https://doc.zeroc.com/display/IceMatlab/Server-Side+Slice-to-C-Sharp+Mapping
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18262523
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+Java

	Writing an Ice Application with C-Sharp

