
Writing an Ice Application with JavaScript

This page shows how to create an Ice client application with JavaScript.

On this page:

Compiling a Slice Definition for JavaScript
Writing a Client in JavaScript
Running the Client in JavaScript

Compiling a Slice Definition for JavaScript
The first step in creating our JavaScript application is to compile our to generate JavaScript proxies. You can compile the definition as Slice definition
follows:

$ slice2js Printer.ice

The compiler produces a single source file, , from this definition. The exact contents of the source file do not concern us for now slice2js Printer.js
— it contains the generated code that corresponds to the interface we defined in .Printer Printer.ice

Back to Top ^

Writing a Client in JavaScript
The client code, in , is shown below in full:Client.js

JavaScript

var Ice = require("ice").Ice;
var Demo = require("./Printer").Demo;

var ic;

Ice.Promise.try(
 function()
 {
 ic = Ice.initialize();
 var base = ic.stringToProxy("SimplePrinter:default -p 10000");
 return Demo.PrinterPrx.checkedCast(base).then(
 function(printer)
 {
 return printer.printString("Hello World!");
 });
 }
).finally(
 function()
 {
 if(ic)
 {
 return ic.destroy();
 }
 }
).exception(
 function(ex)
 {
 console.log(ex.toString());
 process.exit(1);
 });

https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+Java+Compat
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+MATLAB
https://doc.zeroc.com/display/IceMatlab/Writing+a+Slice+Definition

1.

2.

3.

4.

5.

6.

7.

8.

9.

The program begins with statements that assign modules from the Ice run time and the generated code to convenient local variables. (require These stat
ements are necessary for use with NodeJS. Browser applications would omit these statements and load the modules a different way.)

The program begins with a call to to launch a chain of (or futures) that handles the asynchronous nature of Ice invocations Ice.Promise.try promises
with a structure that resembles synchronous code.

The function passed to is executed immediately. The body of this function begins by calling to initialize the Ice run time. try Ice.initialize
The call to returns an reference, which is the main object in the Ice run time.initialize Ice.Communicator
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy "Sim

. Note that the string contains the object identity and the port number that were used by the server. plePrinter:default -p 10000"
(Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. But to stringToProxy Ice.ObjectPrx
actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by Demo::Printer Object
calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a Demo.PrinterPrx.checkedCast Demo::

 interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other type, Printer Demo::PrinterPrx
the call returns .null
The function involves a remote invocation to the server, which means this function has asynchronous semantics and therefore it checkedCast
returns a new promise object.
We call on the promise returned by and supply a "success" function, meaning the code that's executed when then checkedCast checkedCast
succeeds. This inner function accepts one argument, , representing a proxy to the newly-downcasted object, or if the remote printer null
object doesn't support the interface.Printer
Inside the success function, we now have a live proxy in our address space and can call the method, passing it the time-honored printString "

 string. The server prints that string on its terminal. Again, is a remote invocation, and it returns a promise that Hello World!" printString

the success function passes along as its own return value.
The function also returns a new promise which our outer function passes back to . This outer promise is chained to the promise then try
associated with the invocation; the outer promise completes successfully if and when the invocation completes printString printString
successfully.
The function passed to is executed after the block has completed, whether or not it completes successfully. If we created a finally try
communicator in the block, we destroy it here. Doing this is essential in order to correctly finalize the Ice run time: the program call try must dest

 on any communicator it has created; otherwise, undefined behavior results. The function has asynchronous semantics, so we roy destroy
return its promise to ensure no subsequent code is executed until completes.destroy
Lastly, the function passed to is the default exception handler for this entire promise chain.exception

Back to Top ^

Running the Client in JavaScript
The server must be started before the client. Since Ice for JavaScript does not currently include a complete server-side implementation, we need to use a
server from another language mapping. In this case, we will use the :C++ server

$ server

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ node Client.js
$

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. To "Hello World!"
get rid of the server, we interrupt it on the command line.

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get something like
the following:

Ice::ConnectionRefusedException
 ice_cause: "Error: connect ECONNREFUSED"
 error: "ECONNREFUSED"

Note that, to successfully run the client, NodeJS must be able to locate the Ice for JavaScript modules. See the Ice for JavaScript installation instructions
for more information.

Back to Top ^

See Also

Client-Side Slice-to-JavaScript Mapping
IceGrid

https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Modules
https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Operations#JavaScriptMappingforOperations-promise
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18262523
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-JavaScript+Mapping
https://doc.zeroc.com/display/IceMatlab/IceGrid

https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+MATLAB

	Writing an Ice Application with JavaScript

