
Writing an Ice Application with Python

This page shows how to create an Ice application with Python.

On this page:

Compiling a Slice Definition for Python
Writing a Server in Python
Writing a Client in Python
Running Client and Server in Python

Compiling a Slice Definition for Python
The first step in creating our Python application is to compile our to generate Python proxies and skeletons. You can compile the definition Slice definition
as follows:

$ slice2py Printer.ice

The compiler produces a single source file, , from this definition. The compiler also creates a Python package for the slice2py Printer_ice.py Demo
module, resulting in a subdirectory named . The exact contents of the source file do not concern us for now — it contains the generated code that Demo
corresponds to the interface we defined in .Printer Printer.ice

Back to Top ^

Writing a Server in Python
To implement our interface, we must create a servant class. By convention, a servant class uses the name of its interface with an -suffix, so our Printer I
servant class is called :PrinterI

Python

class PrinterI(Demo.Printer):
 def printString(self, s, current=None):
 print s

The class inherits from a base class called , which is generated by the compiler. The base class is abstract and PrinterI Demo.Printer slice2py
contains a method that accepts a string for the printer to print and a parameter of type . (For now we will ignore the printString Ice.Current Ice.

 parameter.) Our implementation of the method simply writes its argument to the terminal.Current printString

The remainder of the server code, in , follows our servant class and is shown in full here:Server.py

Python

import sys, Ice
import Demo

class PrinterI(Demo.Printer):
 def printString(self, s, current=None):
 print s

with Ice.initialize(sys.argv) as communicator:
 adapter = communicator.createObjectAdapterWithEndpoints("SimplePrinterAdapter", "default -p 10000")
 object = PrinterI()
 adapter.add(object, communicator.stringToIdentity("SimplePrinter"))
 adapter.activate()
 communicator.waitForShutdown()

The body of the main program contains a block in which we place all the server code. If the code throws an exception, it will be handled by the with
Python interpreter which typically prints out the exception and then returns failure to the operating system.

https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+PHP
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+Ruby
https://doc.zeroc.com/display/IceMatlab/Writing+a+Slice+Definition
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

1.

2.

3.
4.

5.

6.

1.
2.

3.

4.
5.

The object implements the Python context manager protocol, which allows us to use the statement for the initialization of the Ice.Communicator with I
 object. This ensures the communicator method is called when the block goes out of scope. Doing this is essential in ce.Communicator destroy with

order to correctly finalize the Ice run time

The server code goes through the following steps:

We initialize the Ice run time by calling . (We pass to this call because the server may have command-line Ice.initialize sys.argv
arguments that are of interest to the run time; for this example, the server does not require any command-line arguments.) The call to initialize
returns an reference, which is the main object in the Ice run time.Ice.Communicator
We create an object adapter by calling on the instance. The arguments we pass are createObjectAdapterWithEndpoints Communicator

 (which is the name of the adapter) and , which instructs the adapter to listen for incoming "SimplePrinterAdapter" "default -p 10000"
requests using the default protocol (TCP/IP) at port number 10000.
At this point, the server-side run time is initialized and we create a servant for our interface by instantiating a object.Printer PrinterI
We inform the object adapter of the presence of a new servant by calling on the adapter; the arguments to are the servant we have just add add
instantiated, plus an identifier. In this case, the string is the name of the Ice object. (If we had multiple printers, each would "SimplePrinter"
have a different name or, more correctly, a different .)object identity
Next, we activate the adapter by calling its method. (The adapter is initially created in a holding state; this is useful if we have many activate
servants that share the same adapter and do not want requests to be processed until after all the servants have been instantiated.)
Finally, we call . This call suspends the calling thread until the server implementation terminates, either by making a call to waitForShutdown
shut down the run time, or in response to a signal. (For now, we will simply interrupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the same for all servers. You can put that code into a helper class and,
thereafter, will not have to bother with it again. (Ice provides such a helper class, called .) As far as actual application code is Ice.Application
concerned, the server contains only a few lines: three lines for the definition of the class, plus two lines to instantiate a object and PrinterI PrinterI
register it with the object adapter.

Back to Top ^

Writing a Client in Python
The client code, in , looks very similar to the server. Here it is in full:Client.py

Python

import sys, Ice
import Demo

with Ice.initialize(sys.argv) as communicator:
 base = communicator.stringToProxy("SimplePrinter:default -p 10000")
 printer = Demo.PrinterPrx.checkedCast(base)
 if not printer:
 raise RuntimeError("Invalid proxy")

 printer.printString("Hello World!")

Note that the overall code layout is the same as for the server: we use the same block. The code does the following:with

As for the server, we initialize the Ice run time by calling .Ice.initialize
The next step is to obtain a proxy for the remote printer. We create a proxy by calling on the communicator, with the string stringToProxy "Sim

. Note that the string contains the object identity and the port number that were used by the server. plePrinter:default -p 10000"
(Obviously, hard-coding object identities and port numbers into our applications is a bad idea, but it will do for now; we will see more
architecturally sound ways of doing this when we discuss .)IceGrid
The proxy returned by is of type , which is at the root of the inheritance tree for interfaces and classes. But to stringToProxy Ice.ObjectPrx
actually talk to our printer, we need a proxy for a interface, not an interface. To do this, we need to do a down-cast by Demo::Printer Object
calling . A checked cast sends a message to the server, effectively asking "is this a proxy for a Demo.PrinterPrx.checkedCast Demo::

 interface?" If so, the call returns a proxy of type ; otherwise, if the proxy denotes an interface of some other type, Printer Demo.PrinterPrx
the call returns .None
We test that the down-cast succeeded and, if not, throw an error message that terminates the client.
We now have a live proxy in our address space and can call the method, passing it the time-honored string. printString "Hello World!"
The server prints that string on its terminal.

Back to Top ^

Running Client and Server in Python
To run client and server, we first start the server in a separate window:

Failure to call on the communicator before the program exits results in undefined behavior.destroy

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/IceGrid

$ python Server.py

At this point, we won't see anything because the server simply waits for a client to connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server window, we see the that is produced by the printer. To "Hello World!"
get rid of the server, we interrupt it on the command line for now. (We will see cleaner ways to terminate a server in our discussion of .)Ice.Application

If anything goes wrong, the client will print an error message. For example, if we run the client without having first started the server, we get something like
the following:

Traceback (most recent call last):
 File "Client.py", line 10, in ?
 printer = Demo.PrinterPrx.checkedCast(base)
 File "Printer_ice.py", line 43, in checkedCast
 return Demo.PrinterPrx.ice_checkedCast(proxy, '::Demo::Printer', facet)
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be able to locate the Ice extension for Python. See the Ice for Python
installation instructions for more information.

Back to Top ^

See Also

Client-Side Slice-to-Python Mapping
Server-Side Slice-to-Python Mapping
Application Helper Class
The Current Object
IceGrid

https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Server-Side+Slice-to-Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+PHP
https://doc.zeroc.com/display/IceMatlab/Writing+an+Ice+Application+with+Ruby

	Writing an Ice Application with Python

