
Enumerations

Enumeration Syntax and Semantics
A Slice enumerated type definition looks identical to C++:

Slice

module M
{
 enum Fruit { Apple, Pear, Orange }
}

This definition introduces a type named that becomes a new type in its own right. Slice guarantees that the values of enumerators increase from Fruit
left to right, so compares less than in every language mapping. By default, the first enumerator has a value of zero, with sequentially Apple Pear
increasing values for subsequent enumerators.

A Slice enum type introduces a new namespace scope, so the following is legal:

Slice

module M
{
 enum Fruit { Apple, Pear, Orange }
 enum ComputerBrands { Apple, Dell, HP, Lenovo }
}

The example below shows how to refer to an enumerator from a different scope:

Slice

module M
{
 enum Color { Red, Green, Blue }
}
module N
{
 struct Pixel
 {
 M::Color c = Blue;
 }
}

Slice does not permit empty enumerations.

Back to Top ^

Custom Enumerator Values
Slice also permits you to assign custom values to enumerators:

In Ice releases prior to Ice 3.7, an enum type did not create a new namespace and its enumerators were in the same namespace as the enum
type itself. With these releases, you had to select longer enumerator names to avoid a naming clash.

https://doc.zeroc.com/display/IceMatlab/User-Defined+Types
https://doc.zeroc.com/display/IceMatlab/Structures

Slice

const int PearValue = 7;
enum Fruit { Apple = 0, Pear = PearValue, Orange }

Custom values must be unique and non-negative, and may refer to Slice constants of integer types. If no custom value is specified for an enumerator, its
value is one greater than the enumerator that immediately precedes it. In the example above, has the value 8.Orange

The maximum value for an enumerator value is the same as the maximum value for , 2 - 1.int 31

Slice does not require custom enumerator values to be declared in increasing order:

Slice

enum Fruit { Apple = 5, Pear = 3, Orange = 1 } // Legal

Note however that when there is an inconsistency between the declaration order and the numerical order of the enumerators, the behavior of comparison
operations may vary between language mappings.

Back to Top ^

See Also

Structures
Sequences
Dictionaries
Constants and Literals

For an application that is still using version 1.0 of the , changing the definition of an enumerated type may break backward Ice encoding
compatibility with existing applications. For more information, please refer to the for enumerators.encoding rules

https://doc.zeroc.com/display/IceMatlab/Structures
https://doc.zeroc.com/display/IceMatlab/Sequences
https://doc.zeroc.com/display/IceMatlab/Dictionaries
https://doc.zeroc.com/display/IceMatlab/Constants+and+Literals
https://doc.zeroc.com/display/IceMatlab/User-Defined+Types
https://doc.zeroc.com/display/IceMatlab/Structures
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding

	Enumerations

