
User Exceptions

On this page:

User Exception Syntax and Semantics
Default Values for User Exception Members
Declaring User Exceptions in Operations
Restrictions for User Exceptions

User Exception Inheritance

User Exception Syntax and Semantics
Looking at the operation in the interface, we find a potential problem: given that the structure uses as the type of setTime Clock TimeOfDay short
each field, what will happen if a client invokes the operation and passes a value with meaningless field values, such as for the setTime TimeOfDay -199
minute field, or for the hour? Obviously, it would be nice to provide some indication to the caller that this is meaningless. Slice allows you to define user 42
exceptions to indicate error conditions to the client. For example:

Slice

module M
{
 exception Error {} // Empty exceptions are legal

 exception RangeError
 {
 TimeOfDay errorTime;
 TimeOfDay minTime;
 TimeOfDay maxTime;
 }
}

A user exception is much like a structure in that it contains a number of data members. However, unlike structures, exceptions can have zero data
members, that is, be empty. Like classes, user exceptions support inheritance and may include .optional data members

Back to Top ^

Default Values for User Exception Members

You can specify a default value for an exception data member that has one of the following types:

An type (, , ,)integral byte short int long
A type (or)floating point float double
string
bool
enum

For example:

Slice

module M
{
 exception RangeError
 {
 TimeOfDay errorTime;
 TimeOfDay minTime;
 TimeOfDay maxTime;
 string reason = "out of range";
 }
}

https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Basic+Types#BasicTypes-IntegerTypes
https://doc.zeroc.com/display/IceMatlab/Basic+Types#BasicTypes-Floating-PointTypes
https://doc.zeroc.com/display/IceMatlab/Basic+Types#BasicTypes-Strings
https://doc.zeroc.com/display/IceMatlab/Basic+Types#BasicTypes-Booleans
https://doc.zeroc.com/display/IceMatlab/Enumerations

The legal syntax for literal values is the same as for , and you may also use a constant as a default value. The language mapping Slice constants
guarantees that data members are initialized to their declared default values using a language-specific mechanism.

Back to Top ^

Declaring User Exceptions in Operations

Exceptions allow you to return an arbitrary amount of error information to the client if an error condition arises in the implementation of an operation.
Operations use an exception specification to indicate the exceptions that may be returned to the client:

Slice

module M
{
 interface Clock
 {
 idempotent TimeOfDay getTime();
 idempotent void setTime(TimeOfDay time)
 throws RangeError, Error;
 }
}

This definition indicates that the operation may throw either a or an user exception (and no other type of exception). If the setTime RangeError Error
client receives a exception, the exception contains the value that was passed to and caused the error (in the RangeError TimeOfDay setTime errorTi

 member), as well as the minimum and maximum time values that can be used (in the and members). If failed because of me minTime maxTime setTime
an error not caused by an illegal parameter value, it throws . Obviously, because does not have data members, the client will have no idea Error Error
what exactly it was that went wrong — it simply knows that the operation did not work.

To indicate that an operation does not throw any user exception, simply omit the exception specification. (There is no empty exception specification in
Slice.)

As of Ice 3.7, the server-side Ice run time does not verify that a user exception raised by an operation is compatible with the exceptions listed in its Slice
definition, although your implementation language may enforce its own restrictions. The Ice run time in the client does validate user exceptions and raises U

 if it receives an unexpected user exception.nknownUserException

Back to Top ^

Restrictions for User Exceptions

Exceptions are not first-class data types and first-class data types are not exceptions:

You cannot pass an exception as a parameter value.
You cannot use an exception as the type of a data member.
You cannot use an exception as the element type of a sequence.
You cannot use an exception as the key or value type of a dictionary.
You cannot throw a value of non-exception type (such as a value of type or).int string

The reason for these restrictions is that some implementation languages use a specific and separate type for exceptions (in the same way as Slice does).
For such languages, it would be difficult to map exceptions if they could be used as an ordinary data type. (C++ is somewhat unusual among programming
languages by allowing arbitrary types to be used as exceptions.)

Back to Top ^

User Exception Inheritance
Exceptions support inheritance. For example:

https://doc.zeroc.com/display/IceMatlab/Constants+and+Literals

Slice

exception ErrorBase
{
 string reason;
}

enum RTError
{
 DivideByZero, NegativeRoot, IllegalNull /* ... */
}

exception RuntimeError extends ErrorBase
{
 RTError err;
}

enum LError { ValueOutOfRange, ValuesInconsistent, /* ... */ }

exception LogicError extends ErrorBase
{
 LError err;
}

exception RangeError extends LogicError
{
 TimeOfDay errorTime;
 TimeOfDay minTime;
 TimeOfDay maxTime;
}

These definitions set up a simple exception hierarchy:

ErrorBase is at the root of the tree and contains a string explaining the cause of the error.
Derived from are and . Each of these exceptions contains an enumerated value that further ErrorBase RuntimeError LogicError
categorizes the error.
Finally, is derived from and reports the details of the specific error.RangeError LogicError

Setting up exception hierarchies such as this not only helps to create a more readable specification because errors are categorized, but also can be used
at the language level to good advantage. For example, the Slice C++ mapping preserves the exception hierarchy so you can catch exceptions generically
as a base exception, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy, it is not clear whether, at run time, the application will only throw most derived exceptions, such as , or if it RangeError
will also throw base exceptions, such as , , and . If you want to indicate that a base exception, interface, or class LogicError RuntimeError ErrorBase
is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific exception type, at run time, the implementation of the operation may also throw
more derived exceptions. For example:

Slice

exception Base
{
 // ...
}

exception Derived extends Base
{
 // ...
}

interface Example
{
 void op() throws Base; // May throw Base or Derived
}

In this example, may throw a or a exception, that is, any exception that is compatible with the exception types listed in the exception op Base Derived
specification can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be added to an existing hierarchy. Assume that we initially construct clients and
server with the following definitions:

Slice

exception Error
{
 // ...
}

interface Application
{
 void doSomething() throws Error;
}

Also assume that a large number of clients are deployed in field, that is, when you upgrade the system, you cannot easily upgrade all the clients. As the
application evolves, a new exception is added to the system and the server is redeployed with the new definition:

Slice

exception Error
{
 // ...
}

exception FatalApplicationError extends Error
{
 // ...
}

interface Application
{
 void doSomething() throws Error;
}

This raises the question of what should happen if the server throws a from . The answer depends whether the FatalApplicationError doSomething
client was built using the old or the updated definition:

If the client was built using the same definition as the server, it simply receives a .FatalApplicationError
If the client was built with the original definition, that client has no knowledge that even exists. In this case, the Ice FatalApplicationError
run time automatically slices the exception to the most-derived type that is understood by the receiver (, in this case) and discards the Error
information that is specific to the derived part of the exception. (This is exactly analogous to catching C++ exceptions by value — the exception is
sliced to the type used in the -clause.)catch

Exceptions support single inheritance only. (Multiple inheritance would be difficult to map into many programming languages.)

Back to Top ^

See Also

Constants and Literals
Operations
Run-Time Exceptions
Proxies for Ice Objects
Interface Inheritance
Optional Data Members

https://doc.zeroc.com/display/IceMatlab/Constants+and+Literals
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/IceMatlab/Interface+Inheritance
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions

	User Exceptions

