
Proxies for Ice Objects

Building on the example, we can create definitions for a world-time server:Clock

Slice

module M
{
 exception GenericError
 {
 string reason;
 }

 struct TimeOfDay
 {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 }

 exception BadTimeVal extends GenericError {}

 interface Clock
 {
 idempotent TimeOfDay getTime();
 idempotent void setTime(TimeOfDay time) throws BadTimeVal;
 }

 dictionary<string, Clock*> TimeMap; // Time zone name to clock map

 exception BadZoneName extends GenericError {}

 interface WorldTime
 {
 idempotent void addZone(string zoneName, Clock* zoneClock);
 void removeZone(string zoneName) throws BadZoneName;
 idempotent Clock* findZone(string zoneName) throws BadZoneName;
 idempotent TimeMap listZones();
 idempotent void setZones(TimeMap zones);
 }
}

The interface acts as a collection manager for clocks, one for each time zone. In other words, the interface manages a collection WorldTime WorldTime
of pairs. The first member of each pair is a time zone name; the second member of the pair is the clock that provides the time for that zone. The interface
contains operations that permit you to add or remove a clock from the map (and), to search for a particular time zone by name (addZone removeZone fi

), and to read or write the entire map (and).ndZone listZones setZones

The example illustrates an important Slice concept: note that accepts a parameter of type and returns a WorldTime addZone Clock* findZone
parameter of type . In other words, interfaces are types in their own right and can be passed as parameters. The operator is known as the Clock* * proxy

. Its left-hand argument must be an interface (or) and its return type is a proxy. A proxy is like a pointer that can denote an object. The operator class
semantics of proxies are very much like those of C++ class instance pointers:

A proxy can be .null
A proxy can dangle (point at an object that is no longer there).
Operations dispatched via a proxy use late binding: if the actual run-time type of the object denoted by the proxy is more derived than the proxy's
type, the implementation of the most-derived interface will be invoked.

When a client passes a proxy to the operation, the proxy denotes an actual object in a server. The denoted by Clock addZone Clock Clock Ice object
that proxy may be implemented in the same server process as the interface, or in a different server process. Where the object is WorldTime Clock
physically implemented matters neither to the client nor to the server implementing the interface; if either invokes an operation on a particular WorldTime
clock, such as , an RPC call is sent to whatever server implements that particular clock. In other words, a proxy acts as a local "ambassador" for getTime
the remote object; invoking an operation on the proxy forwards the invocation to the actual object implementation. If the object implementation is in a
different address space, this results in a remote procedure call; if the object implementation is collocated in the same address space, the Ice run time may
optimize the invocation.

https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Interface+Inheritance
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Interface+Inheritance#InterfaceInheritance-NullProxies

Note that proxies also act very much like pointers in their sharing semantics: if two clients have a proxy to the same object, a state change made by one
client (such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ and Java). This means that you cannot pass something other than a Clock
proxy to the operation; attempts to do so are rejected at compile time.addZone

See Also

Classes
Interfaces, Operations, and Exceptions
User Exceptions
Run-Time Exceptions
Interface Inheritance

https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Interface+Inheritance
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Interface+Inheritance

	Proxies for Ice Objects

