Slice Metadata Directives
-

Previous

On this page:

® General Metadata Directives
° amd
© delegate
O deprecate
O ice-prefix
o format
© marshaled-result
O preserve-slice
O protected
O suppress-warning
© underscore
® Metadata Directives for C++
O cpp:array
© cpp:class
© cpp:comparable
O cpp:const
© cpp:dil-export: SYMBOL
© cpp:header-ext
O cpp:ice_print
O cpp:include
O cpp:noexcept
O cpp:range
© cpp:scoped
O cpp:source-ext
O cpp:type:ct++-type
O cpp:type:string and cpp:type:wstring
© cpp:unscoped
O cpp:view-type:c++-view-type
O cpp:virtual
® Metadata Directives for C#
© cs:attribute
cs:class
cs:generic:List, cs:generic:LinkedList, cs:generic:Queue and cs:generic:Stack
cs:generic:SortedDictionary
cs:generic
cs:implements:type
cs:property
cs:serializable
© csitie
® Metadata Directives for Java
© java:buffer
java:getset
java:iimplements:type
java:optional
java:package
java:serializable
java:serialVersionUID
java:tie
java:type
© java:UserException
® Metadata Directives for Objective-C
© objc:dll-export:SYMBOL
O objc:header-dir
O objc:prefix
© objc:scoped
® Metadata Directives for Python
o python:package
© python:pkgdir
© python:seq:default, python:seq:list and python:seq:tuple
® Metadata Directives for Freeze
o freeze:read and freeze:write

O O O O O 0 O

[e]
[e]
[e]
[e]
[e]
[e]
[e]
[e]

General Metadata Directives

amd

https://doc.zeroc.com/display/IceMatlab/Slice+Keywords
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System

This directive applies to interfaces, classes, and individual operations. It enables code generation for asynchronous method dispatch. (See the relevant
language mapping chapter for details.)

del egat e

This directive applies only to local interfaces with one operation. Interfaces with this metadata will be generated as a st d: : f uncti on in C++, a del egat e
in C#, and an interface with one operation (usable as a Funct i onal | nt er f ace for Java 8) in Java.

deprecate

This directive allows you to emit a deprecation warning for Slice constructs.

i ce-prefix

This global directive allows the use of identifiers that start with the reserved prefix | ce (or | CE, i ce etc.). Only Slice files provided by Ice should use this
directive.

f or mat
This directive defines the encoding format used for any classes or exceptions marshaled as the arguments or results of an operation. The tag can be
applied to an interface, which affects all of its operations, or to individual operations. Legal values for the tag are f or mat : sl i ced, f or mat : conpact,

and f or mat : def aul t . A tag specified for an operation overrides any setting applied to its enclosing interface. The | ce. Def aul t . Sl i cedFor mat
property defines the behavior when no tag is present.

mar shal ed-resul t

This directive changes the return type of servant methods so that a servant can force its results to be marshaled immediately in a thread-safe manner.
Refer to the relevant server-side language mapping sections for more information on the rules for parameter passing.

preserve-slice
This directive applies to classes and exceptions, allowing an intermediary to forward an instance of the annotated type, or any of its subtypes, with all of its

slices intact. Operations that transfer such types must be annotated with f or nat : sl i ced. It is not necessary to repeat the pr eser ve- sl i ce tag on
derived types, but you may wish to do so for documentation purposes.

pr ot ect ed

This directive applies to data members of classes and changes code generation to make these members protected. See class mapping of the relevant
language mapping chapter for more information.

suppr ess-war ni ng
This global directive allows to suppress Slice compiler warnings. It applies to all definitions in the Slice file that includes this directive. If one or more

categories are specified (for example "suppr ess-war ni ng: i nval i d- net adat a" or "suppress-warni ng: deprecat ed, invalid-netadata")
only warnings matching these categories will be suppressed, otherwise all warnings are suppressed. The categories are described in the following table:

Suppress Warning Category Description

al | Suppress all Slice compiler warnings. Equivalentto [[" suppr ess-war ni ng"]] .
depr ecat ed Suppress warnings related to deprecated features.
i nval i d- net adat a Suppress warnings related to invalid metadata.

under score
This global directive allows the use of identifiers with underscores. It applies to all definitions in the Slice file that includes this directive.

Back to Top

Metadata Directives for C++

The Slice to C++ compiler understands three C++ metadata prefixes: cpp, cppl1 and cpp98. Most C++ metadata directives can be specified with either
one of the prefixes.

cppll and cpp98 directives applies only to their respective mapping. A cpp metadata directive applies to both mappings, and can be overridden by the
same directive with cpp98 or cppll. For example:

https://doc.zeroc.com/display/IceMatlab/Deprecating+Slice+Definitions
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.SlicedFormat
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions#SlicingValuesandExceptions-preserve

Slice

["cpp:type: MyType", "cppll:type: MyNewType"] sequence<byte> ByteSeq;

maps Byt eSeq to My Type with the C++98 mapping, and to MyNewType with the C++11 mapping.

cCpp:array
This directive applies to sequence parameters in operations. It directs the code generator to map these parameters to pairs of pointers.

cpp: cl ass

This directive applies to structures. It directs the code generator to create a C++ class (instead of a C++ structure) to represent a Slice structure. This is a
C++98-only metadata: it has no effect with the C++11 mapping.

cpp: conpar abl e

This directive applies to structures. It directs the code generator to generate comparison operators for a structure regardless of whether it qualifies as a
legal dictionary key type. This is a C++98-only metadata: it has no effect with the C++11 mapping.

cpp: const

This directive applies to operations. It directs the code generator to create a const pure virtual member function for the skeleton class.

cpp: dl | -export: SYMBOL
This global directive applies to all definitions in a Slice file.

Use SYMBOL to control the export and import of symbols from DLLs on Windows and dynamic shared libraries on other platforms. This option allows you to
export symbols from the generated code, and place such generated code in a DLL (on Windows) or shared library (on other platforms). As an example,
compiling a Slice file W dget . i ce with:

Slice
[["cpp:dlI-export:WDGET_API "]]
results in the following additional code being generated into W dget . h:

C++

#i fndef W DGET_API

if defined(lCE_STATIC LIBS)

define WDGET_API [**/

ifdef WDGET_API _EXPORTS

define WDGET_API | CE_DECLSPEC EXPORT
el se

define W DGET_API | CE_DECLSPEC | MPORT
endi f

#endi f

The generated code also includes the provided SYMBOL name (W DGET_API in our example) in the declaration of classes and functions that need to be
exported (when building a DLL or dynamic library) or imported (when using such library).

| CE_DECLSPEC_EXPORT and | CE_DECLSPEC_| MPORT are macros that expand to compiler-specific attributes. For example, for Visual Studio, they are

defined as:

C++

#if defined(_MSC_VER)
define | CE_DECLSPEC EXPORT __decl spec(dl | export)
define | CE_DECLSPEC | MPORT __decl spec(dl I'i nport)

https://doc.zeroc.com/pages/viewpage.action?pageId=18262667
https://doc.zeroc.com/pages/viewpage.action?pageId=18262666
https://doc.zeroc.com/pages/viewpage.action?pageId=18262666
https://doc.zeroc.com/pages/viewpage.action?pageId=18262694#ServerSideC++98MappingforInterfaces-SkeletonClassesinC++

With GCC and clang, they are defined as:

C++

#elif defined(__GNUC__) || defined(__clang_)
define | CE_DECLSPEC EXPORT __attribute_ ((visibility ("default"))
(

)
define | CE_DECLSPEC | MPORT __attribute_ ((visibility ("default")))

The generated .cpp file (W dget . cpp in our example) defines SYMBOL_EXPORTS; this way, you don't need to do anything special when compiling
generated files.

cpp: header - ext
This global directive allows you to use a file extension for C++ header files other than the default . h extension.
cpp:ice_print

This directive applies to exceptions. It directs the code generator to declare (but not implement) an i ce_pri nt member function that overrides the i ce_pr
i nt virtual function inherited from an Ice base class. The application must provide the implementation of this i ce_pri nt function.

cpp: i ncl ude

This global directive allows you inject additional #i ncl ude directives into the generated code. This is useful for custom types.

cpp: noexcept
This directive applies only to operations on local interfaces. When specified, the generated C++ pure virtual function declaration will carry the noexcept

specifier (C++11) or the | CE_NOEXCEPT nacr o (C++98). ICE_NOEXCEPT expands to noexcept ort hrow() depending the C++ compiler and C++
compilation flags.

cpp: range

This directive applies to sequence parameters in operations. It directs the code generator to map these parameters to pairs of iterators. This is a C++98-
only metadata direcetive: it has no effect with the C++11 mapping.

cpp: scoped

This directive applies to enumerations. It directs the code generator to use the enumeration's name as prefix for all generated C++ enumerators. This is a
C++98-only metadata directive: it has no effect on the C++11 mapping. See also cpp: unscoped below.

cpp: sour ce- ext

This global directive allows you to use a file extension for C++ source files other than the default . cpp extension.

cpp: type: c++-type

This directive applies to sequences and dictionaries. It directs the code generator to map the Slice type or parameter to the provided C++ type.

cpp: type: stringandcpp:type: wstring

These directives apply to data members of type string as well as to containers, such as structures, classes, exceptions, and modules. String members map
by default to st d: : st ri ng. You can use the cpp: t ype: wst ri ng metadata to cause a string data member (or all string data members in a structure,
class or exception) to map to st d: : wst ri ng instead. Use the cpp: t ype: st ri ng metadata to force string members to use the default mapping
regardless of any enclosing metadata.

https://doc.zeroc.com/pages/viewpage.action?pageId=18262715
https://doc.zeroc.com/pages/viewpage.action?pageId=18262670
https://doc.zeroc.com/pages/viewpage.action?pageId=18262667#C++98MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/pages/viewpage.action?pageId=18262667
https://doc.zeroc.com/pages/viewpage.action?pageId=16716048
https://doc.zeroc.com/pages/viewpage.action?pageId=18262715
https://doc.zeroc.com/pages/viewpage.action?pageId=18262667#C++98MappingforSequences-CustomSequenceMappinginC++
https://doc.zeroc.com/pages/viewpage.action?pageId=18262668
https://doc.zeroc.com/pages/viewpage.action?pageId=18262664#C++98MappingforBuiltInTypes-wstring
https://doc.zeroc.com/pages/viewpage.action?pageId=18262664#C++98MappingforBuiltInTypes-wstring

Slice

["cpp:type:wstring"]
module A // Al string nenbers in this nodule map by default to std::wstring

{
struct Structl
{
string s; // Maps to std::wstring
}
struct Struct2
{
["cpp:type:string"] string s; // Maps to std::string
}
["cpp:type:string"] // Al string nenbers in this mbdule map by default to std::string
nmodul e | nner
{
struct Struct4
{
string s; // Maps to std::string
}
["cpp:type:wstring"] // Al string nenbers of Struct4 nmap by default to std::wstring
struct Struct3
{
string s; // Maps to std::wstring
}
}
}

cpp: unscoped

This directive applies to enumerations. It directs the code generator to create an old-type unscoped C++ enumeration instead of a scoped enumeration (en
um cl ass). This is a C++11-only directive: it has no effect on the C++98 mapping. See also cpp: scoped above.

cpp: vi ewtype: c+t+-vi ewtype

This directive applies to string, sequence and dictionary parameters. It directs the code generator to map this parameter to the provided C++ type when
this parameter does not need to hold any memory, for example when mapping an in-parameter to a proxy function.

cpp: virtual

This directive applies to classes with the C++98 mapping only. It has no effect with the C++11 mapping. If the directive is present and a class has base
classes, the generated C++ class derives virtually from its bases; without this directive, slice2cpp generates the class so it derives non-virtually from its
bases.

This directive is useful if you use Slice classes as servants and want to inherit the implementation of operations in the base class in the derived class. For
example:

Slice

cl ass Base

{
int baseM();

}

["cpp:virtual "]
class Derived extends Base

{
string derivedOp();

}

The metadata directive causes slice2cpp to generate the class definition for Der i ved using virtual inheritance:

https://doc.zeroc.com/pages/viewpage.action?pageId=16716048

C++98

class Base : public virtual |ce::Cbject

{
11
h
class Derived : public virtual Base
{
11
b

This allows you to reuse the implementation of baseQp in the servant for Der i ved using ladder inheritance:

C++98
class Basel : public virtual Base
{
Ice::Int baseOp(const lce::Currenté&);
/1
b
class Derivedl : public virtual Derived, public virtual Basel
{
/] Re-use inherited baseQp()
b

Note that, if you have data member in classes and use virtual inheritance, you need to take care to correctly call base class constructors if you implement
your own one-shot constructor. For example:

Slice

cl ass Base

{
int baselnt;
}
class Derived extends Base
{
int derivedlnt;
}

The generated one-shot constructor for Der i ved initializes both basel nt and deri vedI nt :

C++98

Derived: :Derived(lce::Int iceP_baselnt, Ice::Int iceP_derivedlnt)
M : Base(i ceP_baselnt),
derivedl nt (i ceP_derivedl nt)

If you derive your own class from Der i ved and add a one-shot constructor to your class, you must explicitly call the constructor of all the base classes,
including Base. Failure to call the Base constructor will result in Base being default-constructed instead of getting a defined value. For example:

C++98

class Derivedl : public virtual Derived
{
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Base(baselnt), Derived(baselnt, derivedlint), _s(s)
{
}

private:
string _s;

}

This code correctly initializes the basel nt member of the Base part of the class. Note that the following does not work as intended and leaves the Base p
art default-constructed (meaning that basel nt is not initialized):

C++98

class Derivedl : public virtual Derived
{
public:
Derivedl (int baselnt, int derivedlnt, const string& s)
Derived(basel nt, derivedint), _s(s)

{
/1 WRONG Base::baselnt is not initialized.
}
private:
string _s;

b
Back to Top

Metadata Directives for C#

The metadata for C# (or .NET) directives uses the cs prefix or the cl r prefix. These two prefixes are interchangeable: cs: attri buteandclr:
attri but e have exactly the same meaning. We present these directives with the cs prefix below.

In Ice releases prior to 3.7, the cs prefix was used exclusively for the metadata directives cs: attri bute and cs: ti e while the cl r prefix was used for
all other directives.

cs:attribute

This directive can be used both as a global directive and as directive for specific Slice constructs. It injects C# attribute definitions into the generated code.
(See C-Sharp Attribute Metadata Directive.)

cs: cl ass

This directive applies to Slice structures. It directs the code generator to emit a C# class instead of a structure.

cs: generic:List,cs:generic:LinkedLi st,cs: generic: Queue and cs: generi c: St ack

These directives apply to sequences and map them to the specified sequence type.

cs: generic: SortedDi ctionary

This directive applies to dictionaries and maps them to Sor t edDi cti onary.

cs: generic

This directive applies to sequences and allows you map them to custom types.

https://doc.zeroc.com/display/IceMatlab/C-Sharp+Attribute+Metadata+Directive
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-ClassMappingforStructuresinC#
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Sequences
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Dictionaries
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Sequences

cs:inplements:type

This directive adds the specified base type to the generated code for a Slice structure, class or interface. For example, Ice defines the Conmuni cat or
interface as shown below:

Slice

["cs:inplenents: _System | Di sposabl e"]
local interface Communicator { ... }

Consequently, the generated C# interface | ce. Conmuni cat or implements | Di sposabl e.

@ Every Slice-generated C# source file defines two namespace aliases:

using _System = gl obal : : System
using _Mcrosoft = global::Mcrosoft;

We recommend using these aliases if your metadata refers to the Syst emor M cr osof t namespaces.

When used with structs, this metadata can only refer to interfaces without operations. With classes, the code is responsible for registering a value factory if
the Slice class is transferred over-the-wire and uses this metadata to implement native C# interfaces.

cs: property

This directive applies to Slice structures and classes. It directs the code generator to create C# property definitions for data members.

cs:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native objects, without having to define corresponding Slice definitions for these
classes.

cs:tie
This directive applies to an interface or a class with operations, and triggers the generation of a tie class.

Back to Top »

Metadata Directives for Java

j ava: buffer

This directive applies to sequences of certain primitive types. It directs the translator to map the sequence to a subclass of j ava. ni 0. Buf f er .

j ava: get set

This directive applies to data members and structures, classes, and exceptions. It adds accessor and modifier methods (JavaBean methods) for data
members.

java: i npl ements: type

This directive adds the specified base interface to the generated code for a Slice structure, class or interface. For example, Ice defines the Communi cat or
interface as shown below:

Slice

["java:inpl enents:java. |l ang. Aut oCl oseabl e"]
local interface Communicator { ... }

Consequently, the generated Java interface Comruni cat or implements j ava. | ang. Aut oCl oseabl e.

When used with structs, this metadata can only refer to interfaces without operations. With classes or interfaces, the generated Java interface will be
marked as abst r act . The code is responsible for registering a value factory if the Slice class is transferred over-the-wire and uses this metadata to
implement native Java interfaces.

https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Structures#CSharpMappingforStructures-PropertyMappingforStructuresinC#
https://doc.zeroc.com/display/IceMatlab/Serializable+Objects+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Tie+Classes+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Sequences
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaBeanMapping
https://doc.zeroc.com/display/IceMatlab/Value+Factories

j ava: opti onal

1 This directive is only used by the Java Compat mapping and has no effect in the Java mapping.

This directive forces optional output parameters to use the optional mapping instead of the default required mapping in servants.

j ava: package

This global directive instructs the code generator to place the generated classes into a specific package.

java: serializable

This directive allows you to use Ice to transmit serializable Java classes as native objects, without having to define corresponding Slice definitions for these
classes.

j ava: seri al Versi onUl D

This directive overrides the default (generated) value of seri al Ver si onUl Dfor a Slice type.
java:tie

1 This directive is only used by the Java Compat mapping and has no effect in the Java mapping.

This directive applies to an interface or a class with operations, and triggers the generation of a tie class.

j ava: type

This directive allows you to use custom types for sequences and dictionaries.

j ava: User Excepti on

This directive applies to operations, and indicates that the generated Java methods on the mapped servant interfaces and class can throw any user
exception, regardless of its specific definition. The exception specification for these methods is simply t hr ows com zeroc. | ce. User Excepti on

(Java) ort hrows | ce. User Except i on (Java Compat). This metadata has no effect on the methods of generated proxies. The directive User Except i ol
(without the j ava: prefix) is a deprecated alias for j ava: User Excepti on.

Back to Top

Metadata Directives for Objective-C

obj c:dl | -export: SYMBOL
This global directive applies to all definitions in a Slice file.

Use SYMBQL to control the export of symbols from dynamic shared libraries. This option allows you to export symbols from the generated code and place
such generated code in a shared library. Compiling a Slice definition with:

Slice
[["objc:dll-export: WDGET_API "]]

adds the provided SYMBOL name (W DGET_API in our example) to the declaration of interfaces and protocols that need to be exported. The generated
code also defines the provided SYMBOL as __attribute__((visibility ("default"))).

@ This option is useful when you create a shared library and compile your Objective-C code with - f vi si bi | i t y=hi dden to reduce the number
of symbols exported.

obj c: header-dir

This global directive allows you to specify a prefix for the header path in generated Objective-C files. For example, all the Slice files from Ice set this
metadata to obj c to allow importing Objective-C headers from the obj c directory (e.g.: #i nport <objc/1ce/lce. h>).

https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Java
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaPackages
https://doc.zeroc.com/display/IceMatlab/Serializable+Objects+in+Java
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-OverridingserialVersionUID
https://doc.zeroc.com/display/IceMatlab/Tie+Classes+in+Java+Compat
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-CustomTypesinJava

obj c: prefix

This directive applies to modules and changes the default mapping for modules to use a specified prefix.

obj c: scoped

This directive applies to enumerations. It directs the code generator to use the enumeration's name as prefix for all generated Objective-C enumerators.

Back to Top »

Metadata Directives for Python

pyt hon: package

This global directive instructs the code generator to enclose the generated code in a specified Python package.

pyt hon: pkgdi r

This global directive instructs the code generator to place the generated code into a specified directory.

pyt hon: seq: def aul t, pyt hon: seq: | i st and pyt hon: seq: tupl e

These directives allow you to change the mapping for Slice sequences.

Back to Top »

Metadata Directives for Freeze

freeze:read and freeze:wite

These directives inform a Freeze evictor whether an operation updates the state of an object, so the evictor knows whether it must save an object before
evicting it.

Back to Top »
See Also
® Metadata

4= »

Previous Next

https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Modules
https://doc.zeroc.com/pages/viewpage.action?pageId=16716048
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Python#CodeGenerationinPython-GeneratingPackagesinPython
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Python
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Sequences#PythonMappingforSequences-CustomizingtheSequenceMappinginPython
https://doc.zeroc.com/display/Freeze37/Freeze+Manual
https://doc.zeroc.com/display/IceMatlab/Metadata
https://doc.zeroc.com/display/IceMatlab/Slice+Keywords
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System

	Slice Metadata Directives

