Parameter Passing in C++11
-

Previous

For each parameter of a Slice operation, the C++ mapping generates a corresponding parameter for the virtual member function in the skeleton. In
addition, every operation has a trailing parameter of type const | ce: : Curr ent & For example, the nane operation of the Node interface has no
parameters, but the name member function of the Node skeleton class has a single parameter of type const | ce: : Cur r ent & We will ignore this
parameter for now.

Parameter passing on the server side has the following rules:

in-parameters are passed by value only

out-parameters are passed by reference

return values are passed by value

optional parameters are enclosed in | ce: : opti onal values

1 Compared to the client side rules, the only difference is for in-parameters: on the client side, they are mapped to value or const reference
(depending on the parameter type), while on the server side they are always passed by value.

On the client side, you allocate these in-parameters and Ice only needs to read them, so const reference is fine for parameters like strings and
vectors. On the server side, Ice allocates these parameters and then relinquishes them to your servant: getting these parameters by value

allows your servant to adopt (move) them.

To illustrate the rules, consider the following interface that passes string parameters in all possible directions:

Slice
nmodul e M
{
interface Exanple
{
string op(string sin, out string sout);
}

The generated skeleton class for this interface looks as follows:

C++

nanespace M

{
class Exanple : public virtual Ice:: Qoject
{
public:
virtual std::string op(string, std::string& const Ice::Current& = 0;
/1
b
}

As you can see, there are no surprises here. For example, we could implement op as follows:

C++

std::string
Exanpl el : :op(std::string sin, std::string& sout, const Ice::Currentg&)

{
cout << sin << endl; /1 In paraneters are initialized
sout = "Hello World!'"; /1 Assign out paraneter
return "Done"; /'l Return a string


https://doc.zeroc.com/pages/viewpage.action?pageId=18262626
https://doc.zeroc.com/pages/viewpage.action?pageId=18262628
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/pages/viewpage.action?pageId=18262672

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote procedure calls
are involved does not impact on your code in any way. The same is true for parameters of other types, such as proxies, classes, or dictionaries: the
parameter passing conventions follow normal C++ rules and do not require special-purpose API calls or memory management.

Back to Top

Thread-Safe Marshaling in C++

The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. For C++
applications, this can affect servant methods that return instances of Slice classes or types referencing Slice classes.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For example, consider the

following Slice:

Slice

sequence<sequence<i nt >> | ntl nt Seq;
sequence<string> StringSeq;
class Gid

{
StringSeq xLabel s;
StringSeq ylLabels;
IntlntSeq val ues;
}
interface Gridintf
{
GidgetGid();
voi d cl earVal ues();
}

And the following servant implementation:

C++

class Gidlintfl : public Gidintf

{
public:
std::shared_ptr<Gid> getGid(const lce::Currentg&);
void clear(const lce::Currenté&);
private:
std::nutex _nutex;
std::shared_ptr<Gid> _grid;
b

std::shared_ptr<Gid>
Gidintfl::getGid(const Ice::Current&)

{
std::lock_guard<std:: mutex> | ock(_mnutex);
return _grid,

}

voi d

Gidintfl::clearValues(const Ice::Current&)

{
std:: 1 ock_guard<std::nutex> | ock(_nutex);
_grid->values.clear();

}

Suppose that a client invoked the get G i d operation. While the Ice run time marshals the returned class in preparation to send a reply message, it is
possible for another thread to dispatch the cl ear Val ues operation on the same servant. This race condition can result in several unexpected outcomes,
including a failure during marshaling or inconsistent data in the reply to get G i d. Synchronizing the get G'i d and set Val ue operations does not fix the
race condition because the Ice run time performs its marshaling outside of this synchronization.

Solution 1: Copying



One solution is to implement accessor operations, such as get Gri d, so that they return copies of any data that might change. There are several
drawbacks to this approach:

® Excessive copying can have an adverse affect on performance.

® The operations must return deep copies in order to avoid similar problems with nested values.
® The code to create deep copies is tedious and error-prone to write.

Solution 2: Copy on Write

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, cl ear Val ues replaces _gri d with a
copy that contains empty values, leaving the previous contents of _gri d unchanged:

C++

void Gidlntfl::clearValues(const Ice::Current&)

{
std::lock_guard<std:: mutex> | ock(_mnutex);
shared_ptr<Grid> grid = make_shared<Gid>();
grid->xLabels = _grid->xLabel s;
grid->yLabels = _grid->ylLabel s;
_grid = grid,

}

This allows the Ice run time to safely marshal the return value of get Gri d because the val ues array is never modified again. For applications where data
is read more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make copies.
Furthermore, intelligent use of shallow copying can minimize the overhead in mutating operations.

Solution 3: Marshal Immediately

Finally, a third approach is to modify the servant mapping using metadata in order to force the marshaling to occur immediately within your
synchronization. Annotating a Slice operation with the mar shal ed-r esul t metadata directive changes the signature of the corresponding servant
method, if that operation returns mutable types. The metadata directive has the following effects:

® For an operation op that returns one or multiple values and at least one of those values has a mutable type, the Slice compiler generates an CpMa
rshal edResul t class and the return type of the servant method becomes OpMar shal edResul t .

® The constructor for OpMar shal edResul t takes an extra argument of type Cur r ent . The servant must supply the Cur r ent in order for the
results to be marshaled correctly.

The metadata directive has no effect on the proxy mapping, nor does it affect the servant mapping of Slice operations that return voi d or return only
immutable values.

@ You can also annotate an interface with the mar shal ed- r esul t metadata and it will be applied to all of the interface's operations.

After applying the metadata, we can now implement the Gri d servant as follows:

C++

Get Gri dvar shal edResul t
Gidintfl::getGid(const Ice::Current& currrent)
{

}

return CGet Gri dMarshal edResult(_grid, curr); // _grid is narshaled i mediately

Here are more examples to demonstrate the mapping:



Slice

class C{ ... }
struct S{ ... }
sequence<string> Seq;

interface Exanple

{
Cget);

["marshal ed-resul t"]
C get C2();

voi d getS(out S val);

["marshal ed-resul t"]
voi d getS2(out S val);

string getVal ues(string name, out Seq val);

["marshal ed-resul t"]
string getVal ues2(string nane, out Seq val);

Review the generated code below to see the changes that the presence of the metadata causes in the servant method signatures:

C++

class Exanple : public virtual Ice:: Qoject

lce::Current& = 0;

Back to Top »

{
public:
cl ass Get CMar shal edResul t public Ice:: Marshal edResul t
{
public:
Get CMvar shal edResul t (const std::shared_ptr<C>& const lce::Current&);
b
cl ass Get S2Mar shal edResul t public Ice:: Mrshal edResul t
{
public:
Get S2Mar shal edResul t (const S&, const Ice::Current&);
b
cl ass Get Val ues2Mar shal edResul t public Ice:: Marshal edResul t
{
public:
Get Val ues2Mar shal edResul t (const std::string& const Seq& const lce::Current&);
b
virtual std::shared_ptr<C> getC(const Ice::Current& = 0;
virtual GetC2Marshal edResult get C2(const lce::Current& = O;
virtual S getS(const Ice::Current& = 0;
virtual Get S2Marshal edResult getS2(const lce::Current& = 0;
virtual std::string getValues(std::string, Seq& const lce::Current& = O;
virtual GetVal ues2Marshal edResult getVal ues2(std::string, const
b
See Also

Server-Side C++11 Mapping for Interfaces
C++11 Mapping for Operations

C++11 Mapping for Optional Values
Raising Exceptions in C++11

The Current Object


https://doc.zeroc.com/pages/viewpage.action?pageId=18262626
https://doc.zeroc.com/pages/viewpage.action?pageId=18262616
https://doc.zeroc.com/pages/viewpage.action?pageId=18262617
https://doc.zeroc.com/pages/viewpage.action?pageId=18262628
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

Previous Next


https://doc.zeroc.com/pages/viewpage.action?pageId=18262626
https://doc.zeroc.com/pages/viewpage.action?pageId=18262628

	Parameter Passing in C++11

