
C++11 Strings and Character Encoding

On the wire, Ice all strings as Unicode strings in UTF-8 encoding. For languages other than C++, Ice uses strings in their language-native transmits
Unicode representation and converts automatically to and from UTF-8 for transmission, so applications can transparently use characters from non-English
alphabets.

However, for C++, how strings are represented inside a process depends on the platform as well as the mapping that is chosen for a particular string: the
default mapping to , or the to .std::string alternative mapping std::wstring

We will explore how strings are encoded by the Ice for C++ run time, and how you can achieve automatic conversion of strings in their native
representation to and from UTF-8. For an example of using string converters in C++, refer to the sample program provided in the demo/Ice/converter
subdirectory of your Ice distribution.

By default, the Ice run time encodes strings as follows:

Narrow strings (that is, strings mapped to) are presented to the application in UTF-8 encoding and, similarly, the application is std::string
expected to provide narrow strings in UTF-8 encoding to the Ice run time for transmission.

With this default behavior, the application code is responsible for converting between the native codeset for 8-bit characters and UTF-8. For
example, if the native codeset is ISO Latin-1, the application is responsible for converting between UTF-8 and narrow (8-bit) characters in ISO
Latin-1 encoding.

Also note that the default behavior does not require the application to do anything if it only uses characters in the ASCII range. (This is because a
string containing only characters in the (7-bit) ASCII range is also a valid UTF-8 string.)

Wide strings (that is, strings mapped to) are automatically encoded as Unicode by the Ice run time as appropriate for the std::wstring
platform. For example, for Windows, the Ice run time converts between UTF-8 and UTF-16 in little-endian representation whereas, for Linux, the
Ice run time converts between UTF-8 and UTF-32 in the endian-ness appropriate for the host CPU.

With this default behavior, wide strings are transparently converted between their on-the-wire representation and their native C++ representation
as appropriate, so application code need not do anything special. (The exception is if an application uses a non-Unicode encoding, such as Shift-
JIS, as its native codeset.)wstring

Topics

Installing String Converters with C++11
UTF-8 Conversion with C++11
String Parameters in Local C++11 Calls
Built-in String Converters in C++11
C++11 String Conversion Convenience Functions
The C++11 iconv String Converter
The C++11 Ice String Converter Plug-in
Custom String Converter Plug-ins with C++11

Back to Top ^

See Also

The Ice Protocol
C++11 Mapping for Built-In Types

This discussion is only relevant for C++. For scripting language mappings based on Ice for C++, it is possible to use Ice's default string
 and to .converter plug-in install your own string converter plug-in

https://doc.zeroc.com/pages/viewpage.action?pageId=18262647
https://doc.zeroc.com/pages/viewpage.action?pageId=18262649
https://doc.zeroc.com/display/IceMatlab/Basic+Data+Encoding
https://doc.zeroc.com/pages/viewpage.action?pageId=18262664#C++98MappingforBuiltInTypes-wstring
https://doc.zeroc.com/pages/viewpage.action?pageId=18262649
https://doc.zeroc.com/pages/viewpage.action?pageId=18262650
https://doc.zeroc.com/pages/viewpage.action?pageId=18262651
https://doc.zeroc.com/pages/viewpage.action?pageId=18262652
https://doc.zeroc.com/pages/viewpage.action?pageId=18262653
https://doc.zeroc.com/pages/viewpage.action?pageId=18262654
https://doc.zeroc.com/pages/viewpage.action?pageId=18262655
https://doc.zeroc.com/pages/viewpage.action?pageId=18262656
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
https://doc.zeroc.com/pages/viewpage.action?pageId=18262608
https://doc.zeroc.com/pages/viewpage.action?pageId=18262647
https://doc.zeroc.com/pages/viewpage.action?pageId=18262649
https://doc.zeroc.com/pages/viewpage.action?pageId=18262723
https://doc.zeroc.com/pages/viewpage.action?pageId=18262723
https://doc.zeroc.com/pages/viewpage.action?pageId=18262724

	C++11 Strings and Character Encoding

