
Smart Pointers for Classes

On this page:

Automatic Memory Management with Smart Pointers
Copying and Assignment of Classes
Polymorphic Copying of Classes
Null Smart Pointers
Preventing Stack-Allocation of Class Instances
Smart Pointers and Constructors
Smart Pointers and Exception Safety
Smart Pointers and Cycles
Garbage Collection of Class Instances
Smart Pointer Comparison

Automatic Memory Management with Smart Pointers
A recurring theme for C++ programmers is the need to deal with memory allocations and deallocations in their programs. The difficulty of doing so is well
known: in the face of exceptions, multiple return paths from functions, and callee-allocated memory that must be deallocated by the caller, it can be
extremely difficult to ensure that a program does not leak resources. This is particularly important in multi-threaded programs: if you do not rigorously track
ownership of dynamic memory, a thread may delete memory that is still used by another thread, usually with disastrous consequences.

To alleviate this problem, Ice provides smart pointers for classes. These smart pointers use reference counting to keep track of each class instance and,
when the last reference to a class instance disappears, automatically delete the instance.

Smart pointers are generated by the Slice compiler for each class type. For a Slice class , the compiler generates a C++ smart pointer <class-name>
called . Rather than showing all the details of the generated class, here is the basic usage pattern: whenever you allocate a class Ptr<class-name>
instance on the heap, you simply assign the pointer returned from to a smart pointer for the class. Thereafter, memory management is automatic and new
the class instance is deleted once the last smart pointer for it goes out of scope:

C++

{ // Open scope
 TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance
 // Initialize...
 tod->hour = 18;
 tod->minute = 11;
 tod->second = 15;
 // ...
} // No memory leak here!

As you can see, you use to access the members of the class via its smart pointer. When the smart pointer goes out of scope, its operator-> tod
destructor runs and, in turn, the destructor takes care of calling on the underlying class instance, so no memory is leaked.delete

A smart pointer performs reference counting of its underlying class instance:

The constructor of a class sets its reference count to zero.
Initializing a smart pointer with a dynamically-allocated class instance causes the smart pointer to increment the reference count of the instance
by one.
Copy-constructing a smart pointer increments the reference count of the instance by one.
Assigning one smart pointer to another increments the target's reference count and decrements the source's reference count. (Self-assignment is
safe.)
The destructor of a smart pointer decrements the reference count by one and calls on its class instance if the reference count drops to delete
zero.

Suppose that we default-construct a smart pointer as follows:

Smart pointer classes are an example of the () idiom .RAII Resource Acquisition Is Initialization [1]

https://doc.zeroc.com/pages/viewpage.action?pageId=18262674
https://doc.zeroc.com/pages/viewpage.action?pageId=18262689

C++

TimeOfDayPtr tod;

This creates a smart pointer with an internal null pointer.

Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; the assignment to the smart pointer causes the smart pointer to
increment the instance's reference count:

C++

tod = new TimeOfDayI; // Refcount == 1

The resulting situation is shown below:

Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the smart pointer (not the underlying instance) and increments the reference
count of the instance:

C++

TimeOfDayPtr tod2(tod); // Copy-construct tod2
TimeOfDayPtr tod3;
tod3 = tod; // Assign to tod3

Here is the situation after executing these statements:

Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to one of the original smart pointers, :tod2

C++

tod2 = new TimeOfDayI;

This decrements the reference count of the instance originally denoted by and increments the reference count of the instance that is assigned to tod2 tod2
. The resulting situation becomes the following:

Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

C++

tod = 0; // Clear handle

As you would expect, this decrements the reference count of the instance, as shown here:

Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to it, the smart pointer decrements the reference count of its instance; if
the reference count drops to zero, the smart pointer calls to deallocate the instance. The following code snippet deallocates the instance on the delete
right by assigning to :tod2 tod3

C++

tod3 = tod2;

This results in the following situation:

Deallocation of an instance with a reference count of zero.

Back to Top ^

Copying and Assignment of Classes
Classes have a default memberwise copy constructor and assignment operator, so you can copy and assign class instances:

C++

TimeOfDayPtr tod = new TimeOfDayI(2, 3, 4); // Create instance
TimeOfDayPtr tod2 = new TimeOfDayI(*tod); // Copy instance

TimeOfDayPtr tod3 = new TimeOfDayI;
*tod3 = *tod; // Assign instance

Copying and assignment in this manner performs a memberwise shallow copy or assignment, that is, the source members are copied into the target
members; if a class contains class members (which are mapped as smart pointers), what is copied or assigned is the smart pointer, not the target of the
smart pointer.

To illustrate this, consider the following Slice definitions:

Slice

class Node
{
 int i;
 Node next;
}

Assume that we initialize two instances of type as follows:Node

C++

NodePtr p1 = new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

// ...

*p2 = *p1; // Assignment

After executing the first two statements, we have the situation shown below:

Class instances prior to assignment.

After executing the assignment statement, we end up with this result:

Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract classes, such as our class, for example:TimeOfDayI

C++

class TimeOfDayI;

typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr;

class TimeOfDayI : virtual public TimeOfDay
{
 // As before...
};

The default copy constructor and assignment operator will perform a memberwise copy or assignment of your implementation class:

C++

TimeOfDayIPtr tod1 = new TimeOfDayI;
TimeOfDayIPtr tod2 = new TimeOfDayI(*tod1); // Make copy

Of course, if your implementation class contains raw pointers (for which a memberwise copy would almost certainly be inappropriate), you must implement
your own copy constructor and assignment operator that take the appropriate action (and probably call the base copy constructor or assignment operator
to take care of the base part).

Note that the preceding code uses as a typedef for . This class is a template that contains the smart TimeOfDayIPtr IceUtil::Handle<TimeOfDayI>
pointer implementation. If you want smart pointers for the implementation of an abstract class, you must define a smart pointer type as illustrated by this
type definition.

Copying and assignment of classes also works correctly for derived classes: you can assign a derived class to a base class, but not vice-versa; during
such an assignment, the derived part of the source class is sliced, as per the usual C++ assignment semantics.

Back to Top ^

Polymorphic Copying of Classes
As shown in , the C++ mapping generates an member function for every class:Inheritance from Ice::Object ice_clone

https://doc.zeroc.com/pages/viewpage.action?pageId=18262674#C++98MappingforClasses-object

C++

class TimeOfDay : public virtual Ice::Object
{
public:
 // ...

 virtual Ice::ObjectPtr ice_clone() const;
};

This member function makes a polymorphic shallow copy of a class: members that are not class members are deep copied; all members that are class
members are shallow copied. To illustrate, consider the following class definition:

Slice

class Node
{
 Node n1;
 Node n2;
}

Assume that we have an instance of this class, with the and members initialized to point at separate instances, as shown below:n1 n2

A class instance pointing at two other instances.

If we call on the instance on the left, we end up with this situation:ice_clone

 Resulting graph after calling ice_clone on the left-most instance.

As you can see, class members are shallow copied, that is, makes a copy of the class instance on which it is invoked, but does not copy any ice_clone
class instances that are pointed at by the copied instance.

Note that returns a value of type , to avoid problems with compilers that do not support covariant return types. The ice_clone Ice::ObjectPtr
generated classes contain a member that allows you to safely down-cast the return value of . For example, the code to Ptr dynamicCast ice_clone
achieve the situation shown in the illustration above, looks as follows:

C++

NodePtr p1 = new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynamicCast(p1->ice_clone());

ice_clone is generated by the Slice compiler for concrete classes (that is, classes that do not have operations). However, because classes with
operations are abstract, the generated for abstract classes cannot know how to instantiate an instance of the derived concrete class (because ice_clone
the name of the derived class is not known). This means that, for abstract classes, the generated throws a ice_clone CloneNotImplementedExcepti

.on

If you want to clone the implementation of an abstract class, you must override the virtual member in your concrete implementation class. For ice_clone
example:

C++

class TimeOfDayI : public TimeOfDay
{
public:
 virtual Ice::ObjectPtr ice_clone() const
 {
 return new TimeOfDayI(*this);
 }
};

Back to Top ^

Null Smart Pointers
A null smart pointer contains a null C++ pointer to its underlying instance. This means that if you attempt to dereference a null smart pointer, you get an Ic

:eUtil::NullHandleException

C++

TimeOfDayPtr tod; // Construct null handle

try
{
 tod->minute = 0; // Dereference null handle
 assert(false); // Cannot get here
}
catch(const IceUtil::NullHandleException&)
{
 // OK, expected
}
catch(...)
{
 assert(false); // Must get NullHandleException
}

Back to Top ^

Preventing Stack-Allocation of Class Instances
The Ice C++ mapping expects class instances to be allocated on the heap. Allocating class instances on the stack or in static variables is pragmatically
useless because all the Ice APIs expect parameters that are smart pointers, not class instances. This means that, to do anything with a stack-allocated
class instance, you must initialize a smart pointer for the instance. However, doing so does not work because it inevitably leads to a crash:

C++

{ // Enter scope
 TimeOfDayI t; // Stack-allocated class instance
 TimeOfDayPtr todp; // Handle for a TimeOfDay instance

 todp = &t; // Legal, but dangerous
 // ...
} // Leave scope, looming crash!

This goes badly wrong because, when goes out of scope, it decrements the reference count of the class to zero, which then calls on itself. todp delete
However, the instance is stack-allocated and cannot be deleted, and we end up with undefined behavior (typically, a core dump).

The following attempt to fix this is also doomed to failure:

C++

{ // Enter scope
 TimeOfDayI t; // Stack-allocated class instance
 TimeOfDayPtr todp; // Handle for a TimeOfDay instance

 todp = &t; // Legal, but dangerous
 // ...
 todp = 0; // Crash imminent!
}

This code attempts to circumvent the problem by clearing the smart pointer explicitly. However, doing so also causes the smart pointer to drop the
reference count on the class to zero, so this code ends up with the same call to on the stack-allocated instance as the previous example.delete

The upshot of all this is: . The C++ mapping assumes that all class instances are never allocate a class instance on the stack or in a static variable
allocated on the heap and no amount of coding trickery will change this.

You can prevent allocation of class instances on the stack or in static variables by adding a protected destructor to your implementation of the class: if a
class has a protected destructor, allocation must be made with , and static or stack allocation causes a compile-time error. In addition, explicit calls to new d

 on a heap-allocated instance also are flagged at compile time.elete

Back to Top ^

Smart Pointers and Constructors
Slice classes inherit their reference-counting behavior from the class, which ensures that reference counts are managed in a thread-IceUtil::Shared
safe manner. When a stack-allocated smart pointer goes out of scope, the smart pointer invokes the function on the reference-counted object. __decRef
Ignoring thread-safety issues, is implemented like this:__decRef

You could abuse the member to disable deallocation, but we strongly discourage you from doing this.__setNoDelete

Tip

You may want to habitually add a protected destructor to your implementation of abstract Slice classes to protect yourself from accidental heap
allocation, as shown in . (For Slice classes that do not have operations, the Slice compiler automatically adds a protected Class Operations
destructor.)

https://doc.zeroc.com/pages/viewpage.action?pageId=18262736
https://doc.zeroc.com/pages/viewpage.action?pageId=18262674#C++98MappingforClasses-ClassOperationsinC++

C++

void
IceUtil::Shared::__decRef()
{
 if(--_ref == 0 && !_noDelete)
 {
 delete this;
 }
}

In other words, when the smart pointer calls on the pointed-at instance and the reference count reaches zero (which happens when the last __decRef
smart pointer for a class instance goes out of scope), the instance self-destructs by calling .delete this

However, as you can see, the instance self-destructs only if is false (which it is by default, because the constructor initializes it to false). You _noDelete
can call to prevent this self-destruction and, later, call to enable it again. This is necessary if, for __setNoDelete(true) __setNoDelete(false)
example, a class in its constructor needs to pass to another function:this

C++

void someFunction(const TimeOfDayPtr& t)
{
 // ...
}

TimeOfDayI::TimeOfDayI()
{
 someFunction(this); // Trouble looming here!
}

At first glance, this code looks innocuous enough. While is being constructed, it passes to , which expects a smart TimeOfDayI this someFunction
pointer. The compiler constructs a temporary smart pointer at the point of call (because the smart pointer template has a single-argument constructor that
accepts a pointer to a heap-allocated instance, so the constructor acts as a conversion function). However, this code fails badly. The TimeOfDayI
instance is constructed with a statement such as:

C++

TimeOfDayPtr tod = new TimeOfDayI;

The constructor of is called by and, when the constructor starts executing, the reference count of the instance is zero TimeOfDayI operator new
(because that is what the reference count is initialized to by the base class of). When the constructor calls , the Shared TimeOfDayI someFunction
compiler creates a temporary smart pointer, which increments the reference count of the instance and, once completes, the compiler someFunction
dutifully destroys that temporary smart pointer again. But, of course, that drops the reference count back to zero and causes the instance to TimeOfDayI
self-destruct by calling . The net effect is that the call to returns a pointer to an already deleted object, which is likely to delete this new TimeOfDayI
cause the program to crash.

To get around the problem, you can call :__setNoDelete

C++

TimeOfDayI::TimeOfDayI()
{
 __setNoDelete(true);
 someFunction(this);
 __setNoDelete(false);
}

The code disables self-destruction while uses its temporary smart pointer by calling . By doing this, the someFunction __setNoDelete(true)
reference count of the instance is incremented before is called and decremented back to zero when completes without someFunction someFunction
causing the object to self-destruct. The constructor then re-enables self-destruction by calling before returning, so the statement__setNoDelete(false)

C++

TimeOfDayPtr tod = new TimeOfDayI;

does the usual thing, namely to increment the reference count of the object to 1, despite the fact that a temporary smart pointer existed while the
constructor ran.

Back to Top ^

Smart Pointers and Exception Safety
Smart pointers are exception safe: if an exception causes the thread of execution to leave a scope containing a stack-allocated smart pointer, the C++ run
time ensures that the smart pointer's destructor is called, so no resource leaks can occur:

C++

{ // Enter scope...

 TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance

 someFuncThatMightThrow(); // Might throw...

 // ...

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of runs and ensures that it deallocates the underlying class instance.tod

There is one potential pitfall you must be aware of though: if a constructor of a base class throws an exception, and another class instance holds a smart
pointer to the instance being constructed, you can end up with a double deallocation. You can use the mechanism to temporarily disable __setNoDelete
self-destruction in this case, as described .above

Back to Top ^

Smart Pointers and Cycles
One thing you need to be aware of is the inability of reference counting to deal with cyclic dependencies. For example, consider the following simple self-
referential class:

Slice

class Node
{
 int val;
 Node next;
}

Intuitively, this class implements a linked list of nodes. As long as there are no cycles in the list of nodes, everything is fine, and our smart pointers will
correctly deallocate the class instances. However, if we introduce a cycle, we have a problem:

In general, whenever a class constructor passes to a function or another class that accepts a smart pointer, you must temporarily disable this
self-destruction.

1.

2.

C++

{ // Open scope...

 NodePtr n1 = new Node; // N1 refcount == 1
 NodePtr n2 = new Node; // N2 refcount == 1
 n1->next = n2; // N2 refcount == 2
 n2->next = n1; // N1 refcount == 2

} // Destructors run: // N2 refcount == 1,
 // N1 refcount == 1, memory leak!

The nodes pointed to by and do not have names but, for the sake of illustration, let us assume that 's node is called N1, and 's node is called n1 n2 n1 n2
N2. When we allocate the N1 instance and assign it to , the smart pointer increments N1's reference count to 1. Similarly, N2's reference count is 1 n1 n1
after allocating the node and assigning it to . The next two statements set up a cyclic dependency between and by making their pointers n2 n1 n2 next
point at each other. This sets the reference count of both N1 and N2 to 2. When the enclosing scope closes, the destructor of is called first and n2
decrements N2's reference count to 1, followed by the destructor of , which decrements N1's reference count to 1. The net effect is that neither n1
reference count ever drops to zero, so both N1 and N2 are leaked.

Back to Top ^

Garbage Collection of Class Instances
The previous example illustrates a problem that is generic to using reference counts for deallocation: if a cyclic dependency exists anywhere in a graph
(possibly via many intermediate nodes), all nodes in the cycle are leaked.

To avoid memory leaks due to such cycles, Ice for C++ includes a garbage collection facility. The facility identifies class instances that are part of a cycle
but are no longer reachable from the program and deletes such instances. Applications must assist the Ice run time in this process by indicating when a
graph is eligible for collection. For eligible graphs, Ice makes a sweep of the graph each time a reference count to one of the graph's objects is
decremented.

Two components of the garbage collection facility influence its behavior:

The property determines whether Ice assumes all object graphs are eligible for collection by default. Ice.CollectObjects
The method allows an application to indicate whether an object (and by extension, the graph of objects Object::ice_collectable(bool)
reachable via this object) is eligible for collection.

In general, there are two strategies you can use for garbage collection depending on your application's requirements:

Set so that Ice assumes all object graphs are eligible for collection by default. This is recommended for applications Ice.CollectObjects=1
that receive object graphs but rarely modify them. For those situations where an application needs to modify a graph, surround the modification
with calls to as shown below:ice_collectable

C++

NodePtr graph = proxy->getGraph(); // Eligible by default
graph->ice_collectable(false);
// modify graph...
graph->ice_collectable(true);
graph = 0; // Starts a sweep

Set (the default setting) so that Ice does not attempt to collect object graphs except for those explicitly marked by the Ice.CollectObjects=0
application. Use this setting for applications that typically modify the structure of the graphs they receive. Call to ice_collectable(true)
mark a graph as eligible:

The correct operation of the garbage collection facility relies on the assumption that all eligible object graphs are immutable. If an application
needs to make changes that could affect the structure of the graph, it must disable collection for that graph by calling ice_collectable

 on any root object in the graph. Once the changes are complete, call on any root object in the graph to (false) ice_collectable(true)

make it eligible again. Modifying the structure of an eligible graph has undefined behavior.

https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.CollectObjects

2.

1.

C++

NodePtr graph = proxy->getGraph(); // Ineligible by default
// modify graph...
graph->ice_collectable(true);
graph = 0; // Starts a sweep

As mentioned earlier, an application does not take any action to force a collection; rather, the collection occurs automatically when a reference count is
decremented.

Back to Top ^

Smart Pointer Comparison
As for , class handles support the comparison operators , , and . This allows you to use class handles in STL sorted containers. Be proxy handles == != <
aware that, for smart pointers, object identity is not used for the comparison, because class instances do not have identity. Instead, these operators simply
compare the memory address of the classes they point to. This means that returns true only if two smart pointers point at the same physical operator==
class instance:

C++

// Create a class instance and initialize
//
TimeOfDayIPtr p1 = new TimeOfDayI;
p1->hour = 23;
p1->minute = 10;
p1->second = 18;

// Create another class instance with
// the same member values
//
TimeOfDayIPtr p2 = new TimeOfDayI;
p2->hour = 23;
p2->minute = 10;
p2->second = 18;

assert(p1 != p2); // The two do not compare equal

TimeOfDayIPtr p3 = p1; // Point at first class again

assert(p1 == p3); // Now they compare equal

Back to Top ^

See Also

Classes
C++98 Mapping for Classes
Asynchronous Method Invocation (AMI) in C++98
Application Helper Class
Properties and Configuration
The C++ Shared and SimpleShared Classes

References

Stroustrup, B. 1997. . Reading, MA: Addison-Wesley.The C++ Programming Language

To minimize overhead, GC-related behavior is only enabled for those Slice classes whose data members can refer to Ice objects. Furthermore,
graph traversal only occurs for those objects that are part of a cycle and marked as collectable.

https://doc.zeroc.com/pages/viewpage.action?pageId=18262671#C++98MappingforInterfaces-compare
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/pages/viewpage.action?pageId=18262674
https://doc.zeroc.com/pages/viewpage.action?pageId=18262689
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Properties+and+Configuration
https://doc.zeroc.com/pages/viewpage.action?pageId=18262736
http://amzn.com/0201700735
https://doc.zeroc.com/pages/viewpage.action?pageId=18262674
https://doc.zeroc.com/pages/viewpage.action?pageId=18262689

	Smart Pointers for Classes

