Initialization in C-Sharp
&

Previous

Every Ice-based application needs to initialize the Ice run time, and this initialization returns an | ce. Conmruni cat or object.

A Communi cat or is a local C# object that represents an instance of the Ice run time. Most Ice-based applications create and use a single Conmuni cat or
object, although it is possible and occasionally desirable to have multiple Comruni cat or objects in the same application.

You initialize the Ice run time by calling I ce. Util.initialize,for example:

C#

public static void Main(string[] args)

{
I ce. Communi cator conmunicator = lce.Uil.initialize(ref args);
}
lce.Wil.initialize accepts the argument vector that is passed to Mai n by the operating system. The method scans the argument vector for any co
mmand-line options that are relevant to the Ice run time; any such options are removed from the argument vector so, when | ce. Util.initialize return

s, the only options and arguments remaining are those that concern your application. If anything goes wrong during initialization, i ni ti al i ze throws an
exception.

Before leaving your Mai n method, you must call Conmruni cat or . dest r oy. The dest r oy operation is responsible for finalizing the Ice run time. In
particular, in an Ice server, dest r oy waits for any operation implementations that are still executing to complete. In addition, dest r oy ensures that any
outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your Mai n me
thod to terminate without calling dest r oy first.

The general shape of our Mai n method becomes:

C#

using System

public class App
{
public static int Main(string[] args)
{
int status = 0;
| ce. Communi cat or conmuni cator = null;

try
{
/] correct but suboptimal, see bel ow
comuni cator = lce.UWil.initialize(ref args);
/1
}
cat ch(Exception ex)
{
Consol e. Error. Wi teLi ne(ex);
status = 1;

}

i f(comunicator !'= null)

{

/'l correct but suboptinal, see bel ow
conmmuni cat or. destroy();

}

return status,;

This code is a little bit clunky, as we need to make sure the communicator gets destroyed in all paths, including when an exception is thrown.

https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-C-Sharp+Mapping
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line

Fortunately, the | ce. Communi cat or interface implements | Di sposabl e: this allows us to call i ni ti al i ze in a usi ng statement, which disposes of
(destroys) the communicator automatically, without an explicit call to the dest r oy method.

The preferred way to initialize the Ice run time in C# is therefore:

C#

using System

public class App

{
public static int Main(string[] args)
{
try
{
usi ng(l ce. Conmuni cator communi cator = lce.Uil.initialize(ref args))
{
I
} /1 conmmunicator is destroyed autonatically here
}
cat ch(Exception ex)
{
Consol e. Error. WiteLine(ex);
return 1;
}
return O;
}
}
Back to Top »
See Also

® Communicators
® Communicator Initialization
® Application Helper Class

pe

Previous

https://msdn.microsoft.com/en-us/library/system.idisposable(v=vs.110).aspx
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-C-Sharp+Mapping

	Initialization in C-Sharp

