
AMI in C-Sharp with Tasks

On this page:

Basic Asynchronous API in C#
Asynchronous Proxy Methods in C#
Asynchronous Mapping for Out Parameters in C#
Asynchronous Exception Semantics in C#

Polling for Completion in C#
Asynchronous Oneway Invocations in C#
Flow Control in C#
Asynchronous Batch Requests in C#
Canceling Asynchronous Requests in C#
Concurrency Semantics for AMI in C#

Basic Asynchronous API in C#
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Back to Top ^

Asynchronous Proxy Methods in C#

Besides the synchronous proxy methods, generates the following asynchronous proxy method:slice2cs

C#

public interface EmployeesPrx : Ice.ObjectPrx
{
 System.Threading.Tasks.Task<string>
 getNameAsync(int number,
 Ice.OptionalContext context = new Ice.OptionalContext(),
 System.IProgress<bool> progress = null,
 System.Threading.CancellationToken cancel = new System.Threading.CancellationToken());

 ...
}

As you can see, the operation generates a method that accepts several optional parameters:getName getNameAsync

a per-invocation context
a sent callback
a cancellation token

The method sends (or queues) an invocation of . This method does not block the calling thread. It returns a that you can getNameAsync getName Task
use in a number of ways, including blocking to obtain the result, configuring a continuation to be executed when the result becomes available, and polling
to check the status of the request.

Here's an example that calls :getNameAsync

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/AMI+in+C-Sharp+with+AsyncResult
https://doc.zeroc.com/display/Ice37/Request+Contexts

C#

EmployeesPrx e = ...;
Task<string> t = e.getNameAsync(99);

// Continue to do other things here...

string name = t.Result;

Because does not block, the calling thread can do other things while the operation is in progress.getNameAsync

Back to Top ^

Asynchronous Mapping for Out Parameters in C#

.NET's standard API only allows a task to produce one result value. Since a Slice operation could potentially return any number of values, the Task
asynchronous mapping must differ significantly from the synchronous mapping.

The asynchronous mapping depends on how many values an operation returns, including out parameters and a non- return value:void

Zero values
The corresponding C# method returns an instance of .System.Threading.Tasks.Task

One value
The corresponding C# method returns an instance of where is the mapped type, regardless of whether System.Threading.Tasks.Task<T> T
the Slice definition of the operation declared it as a return value or as an out parameter. Consider this example:

Slice

interface I
{
 string op1();
 void op2(out string name);
}

The asynchronous mapping generates corresponding methods with identical signatures:

C#

public interface IPrx : Ice.ObjectPrx
{
 System.Threading.Tasks.Task<string>
 op1Async(Ice.OptionalContext context = new Ice.OptionalContext(),
 System.IProgress<bool> progress = null,
 System.Threading.CancellationToken cancel = new System.Threading.CancellationToken());

 System.Threading.Tasks.Task<string>
 op2Async(Ice.OptionalContext context = new Ice.OptionalContext(),
 System.IProgress<bool> progress = null,
 System.Threading.CancellationToken cancel = new System.Threading.CancellationToken());

 ...
}

Multiple values
The Slice-to-C# translator generates an extra structure to hold the results of an operation that returns multiple values. This "result type" resides in
the same namespace as the proxy interface and has the name , where represents the name of the Slice ResultInterface_Op Interface
interface that defines the operation . The leading character of the operation name is always capitalized. The values of out parameters are Op Op
provided in corresponding data members of the same names. If the operation declares a return value, its value is provided in the data member
named . If an out parameter is also named , the data member to hold the operation's return value is named returnValue returnValue _retur

 instead. The result type defines a "one-shot" constructor that accepts and assigns a value for each of its data members. The nValue
corresponding C# method returns an instance of where is the result type. Consider this example:System.Threading.Tasks.Task<T> T

Slice

interface Example
{
 double op(int inp1, string inp2, out bool outp1, out long outp2);
}

The generated code looks like this:

C#

public struct Example_OpResult
{
 public Example_OpResult(double returnValue, bool outp1, long outp2) { ... }

 public double returnValue;
 public bool outp1;
 public long outp2;
}

public interface ExamplePrx : Ice.ObjectPrx
{
 System.Threading.Tasks.Task<Example_OpResult>
 opAsync(int inp1, string inp2,
 Ice.OptionalContext context = new Ice.OptionalContext(),
 System.IProgress<bool> progress = null,
 System.Threading.CancellationToken cancel = new System.Threading.CancellationToken());

 ...
}

Now let's invoke to demonstrate one way of asynchronously executing an action when the invocation completes:opAsync

C#

ExamplePrx e = ...;
e.opAsync().ContinueWith((t) =>
 {
 try
 {
 var r = t.Result; // Returns Example_OpResult
 Console.WriteLine("returnValue = {0} outp1 = {1} outp2 = {2}", r.returnValue, r.outp1, r.
outp2);
 }
 catch (System.AggregateException ex)
 {
 // handle exception...
 }
 });

Here's a simpler version that uses the keyword:await

C#

ExamplePrx e = ...;
try
{
 var r = await e.opAsync();
 Console.WriteLine("returnValue = {0} outp1 = {1} outp2 = {2}", r.returnValue, r.outp1, r.outp2);
}
catch (Ice.Exception ex)
{
 // handle exception...
}

Back to Top ^

Asynchronous Exception Semantics in C#

If an invocation raises an exception, the exception can be obtained from the task. For example, calling on the task raises a Wait System.
 whose property contains the actual exception. The task's property also returns the AggregateException InnerException Exception AggregateEx

 if the exception has already occurred at the time you access the property.ception

The exception is provided by the task, even if the actual error condition for the exception was encountered during the call to the method ("on the opAsync
way out"). The advantage of this behavior is that all exception handling is located with the code that handles the task (instead of being present twice, once
where the method is called, and again where the task is handled).opAsync

There are two exceptions to this rule:

if you destroy the communicator and then make an asynchronous invocation, the method throws opAsync CommunicatorDestroyedException
 directly.
a call to an function can throw . An function throws this exception if you call an operation that has a return Async TwowayOnlyException Async
value or out-parameters on a oneway proxy.

Back to Top ^

Polling for Completion in C#
The asynchronous API allows you to poll for call completion, which can be useful in a variety of cases. As an example, consider the following simple
interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
}

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file would be send
along the following lines:

Using the keyword to invoke an asynchronous proxy method does not raise but rather raises the inner await AggregateException
exception directly. In other words, the exception semantics with are the same as if you had invoked the synchronous version of the proxy await
method.

C#

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;
while(!file.eof())
{
 byte[] bs;
 bs = file.read(chunkSize); // Read a chunk
 ft.send(offset, bs); // Send the chunk
 offset += bs.Length;
}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive the
data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing — the
client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

C#

using System.Threading;
using System.Threading.Tasks;
...

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;

var results = new LinkedList<Task>();
const int numRequests = 5;
var sent = new AutoResetEvent(false);
while(!file.eof())
{
 byte[] bs;
 bs = file.read(chunkSize);

 // Send up to numRequests + 1 chunks asynchronously.
 var task = ft.sendAsync(offset, bs, progress:(ss) => sent.Set());
 offset += bs.Length;

 // Wait until this request has been passed to the transport.
 sent.WaitOne();
 results.AddLast(task);

 // Once there are more than numRequests, wait for the least
 // recent one to complete.
 while(results.Count > numRequests)
 {
 var t = results.First;
 results.RemoveFirst();
 t.Wait();
 }
}

// Wait for any remaining requests to complete.
Task.WaitAll(results.ToArray());

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other words, the numRequests + 1
client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this allows the client to numRequests
"keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the server to numRequests
process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more requests no
longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the theoretical bandwidth limit
of a native socket connection.

Back to Top ^

Asynchronous Oneway Invocations in C#
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call an asynchronous method on a oneway proxy for an operation that returns values or raises a user exception, the
proxy method throws .TwowayOnlyException

The task returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The task completes with an
exception if an error occurs before the request is successfully written.

Back to Top ^

Flow Control in C#
Asynchronous method invocations never block the thread that calls the asynchronous proxy method. The Ice run time checks to see whether it can write
the request to the local transport. If it can, it does so immediately in the caller's thread. Alternatively, if the local transport does not have sufficient buffer
space to accept the request, the Ice run time queues the request internally for later transmission in the background.

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests pile
up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some threshold,
the client stops invoking more operations until some of the queued operations have drained out of the local transport. One of the optional arguments to
every asynchronous proxy invocation is a . If you provide a delegate, the Ice run time will eventually invoke it when the System.IProgress<bool>
request has been sent and provide a boolean argument indicating whether the request was sent synchronously. This argument is true if the entire request
could be transferred to the local transport in the caller's thread without blocking, otherwise the argument is false. Furthermore, a value of true indicates that
Ice is invoking your delegate recursively from the calling thread, whereas a value of false indicates that Ice is invoking the delegate from an Ice thread pool
thread.

Here's a simple example to demonstrate the flow control feature:

C#

ExamplePrx proxy = ...;
proxy.doSomethingAsync(progress:(sentSynchronously) =>
 {
 if(sentSynchronously)
 {
 // Entire request was accepted by the transport,
 // called recursively from this thread
 }
 else
 {
 // Request was queued but has now been sent,
 // called from a separate thread
 }
 });

Using this feature, you can limit the number of queued requests by counting the number of requests that are queued and decrementing the count when the
Ice run time passes a request to the local transport.

Back to Top ^

Asynchronous Batch Requests in C#
Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flushBa

 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message can be tchRequests
sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

https://doc.zeroc.com/display/IceMatlab/Batched+Invocations

The proxy method flushes any batch requests queued by that proxy. In addition, similar methods are available on the ice_flushBatchRequestsAsync
communicator and the objects. These methods flush batch requests sent via the same communicator and via the same connection, Connection
respectively.

Back to Top ^

Canceling Asynchronous Requests in C#
Every asynchronous proxy method accepts an optional instance of the structure . The default value is an System.Threading.CancellationToken
empty structure, which is equivalent to passing . If your application requires the ability to cancel an asynchronous request, CancellationToken.None
you need to create a from which you can obtain a token. Cancelling a request is achieved by calling on the source CancellationTokenSource Cancel
object.

Back to Top ^

Concurrency Semantics for AMI in C#
The default behavior of a call to is to execute the continuation in a separate thread from the .NET thread pool. If you're trying to minimize ContinueWith
thread context switches, you can pass as an additional argument to . In this TaskContinuationOptions.ExecuteSynchronously ContinueWith
case, the behavior depends on the task's status: if the reply to the proxy invocation has already been received at the time is called, the ContinueWith
continuation will be invoked by the current thread. If the reply has not yet been received, the continuation will be invoked by an Ice thread pool thread.

The scheduler that runs continuations can be changed by passing a custom scheduler to . The Ice thread pool can be used as a task ContinueWith
scheduler, and you can obtain this scheduler by calling the proxy method and passing it to . With the Ice thread pool ice_scheduler ContinueWith
scheduler, the continuation is queued to be executed by the Ice thread pool. If you pass the option TaskContinuationOptions.

 to , and the reply has been received at the time you call , your thread will execute the ExecuteSynchronously ContinueWith ContinueWith
continuation. Therefore, if you want to ensure the continuation is always executed by an Ice thread pool thread (or indirectly the dispatcher, if one is
configured), you need to call :ContinueWith

with as your task scheduler.ice_scheduler()proxy
without as continuation option (or, alternatively, override this option with TaskContinuationOptions.ExecuteSynchronously TaskContin
uationOptions.)RunContinuationsAsynchronously

When using and , the concurrency semantics are determined by the synchronization context in which you're making the proxy invocation. async await
For example, awaiting an asynchronous proxy invocation from the main thread will invoke the continuation from a .NET thread pool thread. Similarly,
awaiting an asynchronous proxy invocation from the GUI thread in a graphical application will invoke the continuation from the GUI thread.

Ice configures a synchronization context for its own thread pool threads, so if you happen to await an asynchronous proxy invocation while in an Ice thread
pool thread, the continuation will also be invoked by an Ice thread.

Refer to the discussion for information about the concurrency semantics of the sent callback.flow control

Back to Top ^

See Also

Request Contexts
Batched Invocations
Collocated Invocation and Dispatch

Cancellation prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends one.
Cancellation is a local operation and has no effect on the server. The result of a canceled invocation is an Ice::

.InvocationCanceledException

If a is configured, the Ice thread pool delegates the execution of the continuation to the dispatcher.dispatcher

https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/AMI+in+C-Sharp+with+AsyncResult
https://doc.zeroc.com/display/IceMatlab/Dispatching+Requests+to+User+Threads

	AMI in C-Sharp with Tasks

