Parameter Passing in C-Sharp
-

Previous

Parameter passing on the server side follows the rules for the client side. Additionally, every operation receives a trailing parameter of type Cur r ent . For
example, the name operation of the Node interface has no parameters, but the corresponding name method of the servant interface has a single parameter
of type Cur r ent . We will ignore this parameter for now.

@ The parameter-passing rules change somewhat when using the asynchronous mapping.

On this page:

® Server-Side Mapping for Parameters in C#
® Thread-Safe Marshaling in C#

© Solution 1: Copying

O Solution 2: Copy on Write

© Solution 3: Marshal Immediately

Server-Side Mapping for Parameters in C#

The servant mapping for operations is consistent with the proxy mapping. To illustrate the rules for the C# mapping, consider the following interface:

Slice
nodul e M
{
interface Exanple
{
string op(string sin, out string sout);
}
}

The generated method for op looks as follows:

C#

public interface Exanpl eOperations_

{
}

string op(string sin, out string sout, Ice.Current current = null);

As you can see, there are no surprises here. For example, we could implement op as follows:

C#

using System

public class Exanplel : ExanpleDisp_

{
public override string op(string sin, out string sout, Ice.Current current = null)
{
Consol e. Wi teLine(sin); /1 In paranms are initialized
sout = "Hello World!'"; /] Assign out param
return "Done";
}

https://doc.zeroc.com/display/IceMatlab/Server-Side+C-Sharp+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/C-Sharp+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+C-Sharp

This code is in no way different from what you would normally write if you were to pass strings to and from a method; the fact that remote procedure calls
are involved does not affect your code in any way. The same is true for parameters of other types, such as proxies, classes, or dictionaries: the parameter
passing conventions follow normal C# rules and do not require special-purpose API calls.

Back to Top

Thread-Safe Marshaling in C#

The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. For C#
applications, this can affect servant methods that return instances of Slice classes, structures, sequences, or dictionaries.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For example, consider the
following servant implementation:

C#

public class Gidl : GidDsp_

{
Gidl()
{
_grid =17/
}
public override int[][] getGid(Current current = null)
{
return _grid;
}
public override void setValue(int x, int y, int val, Current current = null)
{
_grid[x][y] = val;
}
private int[][] _grid;
}

Suppose that a client invoked the get Gri d operation. While the Ice run time marshals the returned array in preparation to send a reply message, it is
possible for another thread to dispatch the set Val ue operation on the same servant. This race condition can result in several unexpected outcomes,
including a failure during marshaling or inconsistent data in the reply to get G i d. Synchronizing the get Gri d and set Val ue operations would not fix the
race condition because the Ice run time performs its marshaling outside of this synchronization.

Solution 1: Copying

One solution is to implement accessor operations, such as get G i d, so that they return copies of any data that might change. There are several
drawbacks to this approach:

® Excessive copying can have an adverse affect on performance.

® The operations must return deep copies in order to avoid similar problems with nested values.
® The code to create deep copies is tedious and error-prone to write.

Solution 2: Copy on Write

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, set Val ue replaces _gri d with a copy
that contains the new element, leaving the previous contents of _gri d unchanged:

C#

public class Gidl : GidDsp_

{ public override int[][] getGid(Current current = null)
{ I ock(this)
{
return _grid;
}
}
public override void setValue(int x, int y, int val, Current current = null)
{
I ock(this)
{
int[]1[] newGid = // shallow copy...
newaid[x][y] = val;
_grid = new&id;
}
}
}

This allows the Ice run time to safely marshal the return value of get Gri d because the array is never modified again. For applications where data is read
more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make copies. Furthermore,
intelligent use of shallow copying can minimize the overhead in mutating operations.

Solution 3: Marshal Immediately

Finally, a third approach is to modify the servant mapping using metadata in order to force the marshaling to occur immediately within your
synchronization. Annotating a Slice operation with the mar shal ed- r esul t metadata directive changes the signature of the corresponding servant
method, but only if that operation returns mutable types. The metadata directive has the following effects:

® For an operation op from an interface | nt f that returns one or multiple values and at least one of those values has a mutable type, the Slice
compiler generates an | nt f _QpMar shal edResul t class and the return type of the servant method becomes QpMar shal edResul t .

® The constructor for | nt f _OpMar shal edResul t takes an extra argument of type Cur r ent . The servant must supply the Cur r ent in order for
the results to be marshaled correctly.

The metadata directive also affects the asynchronous mapping but has no effect on the proxy mapping, nor does it affect the servant mapping of Slice

operations that return voi d or return only immutable values.

@ You can also annotate an interface with the mar shal ed- r esul t metadata and it will be applied to all of the interface's operations.

After applying the metadata, we can now implement the Gri d servant as follows:

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+C-Sharp

C#

public class Gidl : GidDsp_

{
public override Gid_GetGidMarshal edResult getGid(Current current)
{
I ock(this)
{
return new Grid_GetGidMarshal edResult(_grid, current); // _grid is marshaled i mediately
}
}
public override void setValue(int x, int y, int val, Current current)
{
I ock(this)
{
_grid[x][y] =val; // this is safe
}
}
}

Here are more examples to demonstrate the mapping:

Slice
class C{ ... }
struct S{ ... }

sequence<string> Seq;

interface Exanple

{
Cget);
["marshal ed-resul t"]
C get C2();
void getS(out S val);

["marshal ed-resul t"]
voi d get S2(out S val);

string getVal ues(string name, out Seq val);

["marshal ed-resul t"]
string getVal ues2(string nane, out Seq val);

["anmd", "marshal ed-result"]
string getVal uesAM)(string nane, out Seq val);

Review the generated code below to see the changes that the presence of the metadata causes in the servant method signatures:

C#

public struct Exanpl e_Get C2Marshal edResult : |ce. Marshal edResul t

{ publ i c Exanpl e_Get C2Mar shal edResul t (C returnValue, Current current);

}

public struct Exanpl e_Get S2Marshal edResult : |ce. Marshal edResul t

{ publ i c Exanpl e_Get S2Mar shal edResul t (S returnValue, Current current);

}

public struct Exanpl e_Get Val ues2Mar shal edResult : |ce. Marshal edResul t

{ publ i c Exanpl e_Get Val ues2Mar shal edResul t (string returnValue, string[] val, Current current);
}

public struct Exanpl e_Get Val uesAVMDResul t

{ publ i c Exanpl e_Get Val uesAMDResul t (string returnVal ue, string[] val);

}

public struct Exanpl e_GCet Val uesAVDVar shal edResult : | ce. Marshal edResul t

{ publ i c Exanpl e_Get Val uesAVMDMar shal edResul t (string ret, string[] val, Ice.Current current);
}

public interface Exanpl eOperations_
{

C getC(lce.Current current = null);

Exanpl e_Get C2Mar shal edResult get C2(1ce. Current current = null);

S getS(lce.Current current = null);

Exanpl e_Cet S2Mar shal edResult get S2(lce. Current current = null);

string getVal ues(string nanme, out string[] val, lIce.Current current = null);

Exanpl e_Get Val ues2Mar shal edResul t get Val ues2(string nanme, lce.Current current = null);

Syst em Thr eadi ng. Tasks. Task<M Exanpl e_Get Val uesAVDMar shal edResul t > get Val uesAMDAsync(string name, |ce.
Current current = null);

}

Back to Top »

See Also

® Server-Side C-Sharp Mapping for Interfaces
® Raising Exceptions in C-Sharp
® Tie Classes in C-Sharp

® The Current Object

-

Previous

https://doc.zeroc.com/display/IceMatlab/Server-Side+C-Sharp+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Tie+Classes+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Server-Side+C-Sharp+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+C-Sharp

	Parameter Passing in C-Sharp

