
Java Mapping for Exceptions

On this page:

Java Mapping for User Exceptions
Java Constructors for User Exceptions
Java Mapping for Run-Time Exceptions

Java Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError
{
 string reason;
}
exception BadTimeVal extends GenericError {}
exception BadZoneName extends GenericError {}

These exception definitions map as follows:

Java

public class GenericError extends com.zeroc.Ice.UserException
{
 public GenericError()
 {
 this.reason = "";
 }

 public GenericError(Throwable cause)
 {
 super(cause);
 this.reason = "";
 }

 public GenericError(String reason)
 {
 this.reason = reason;
 }

 public GenericError(String reason, Throwable cause)
 {
 super(cause);
 this.reason = reason;
 }

 public String ice_id()
 {
 return "::M::GenericError";
 }

 public String reason;

 ...
}

https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Constants
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects

public class BadTimeVal extends GenericError
{
 public BadTimeVal()
 {
 super();
 }

 public BadTimeVal(Throwable cause)
 {
 super(cause);
 }

 public BadTimeVal(String reason)
 {
 super(reason);
 }

 public BadTimeVal(String reason, Throwable cause)
 {
 super(reason, cause);
 }

 public String ice_id()
 {
 return "::M::BadTimeVal";
 }
 ...
}

public class BadZoneName extends GenericError
{
 public BadZoneName()
 {
 super();
 }

 public BadZoneName(Throwable cause)
 {
 super(cause);
 }

 public BadZoneName(String reason)
 {
 super(reason);
 }

 public BadZoneName(String reason, Throwable cause)
 {
 super(reason, cause);
 }

 public String ice_id()
 {
 return "::M::BadZoneName";
 }

 ...
}

Each Slice exception is mapped to a Java class with the same name. For each data member, the corresponding class contains a public data member.
(Obviously, because and do not have members, the generated classes for these exceptions also do not have members.) A BadTimeVal BadZoneName Ja

 is used for optional data members, and you can to force required members to use this same API.vaBean-style API customize the mapping

The inheritance structure of the Slice exceptions is preserved for the generated classes, so and inherit from .BadTimeVal BadZoneName GenericError

Each exception also defines an method, which returns the Slice type ID of the exception.ice_id

All user exceptions are derived from the base class . This allows you to catch all user exceptions generically by installing a handler for UserException Us
. , in turn, derives from .erException UserException java.lang.Exception

https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-bean

UserException implements a method that is inherited by its derived exceptions, so you can make member-wise shallow copies of exceptions.clone

Note that the generated exception classes contain other methods that are not shown. However, those methods are internal to the Java mapping and are
not meant to be called by application code.

Back to Top ^

Java Constructors for User Exceptions
Exceptions have a default constructor that initializes data members as follows:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration

struct Default-constructed value

Numeric Zero

bool False

sequence Null

dictionary Null

class/interface Null

The constructor won't explicitly initialize a data member if the default Java behavior for that type produces the desired results.

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slice
. The default constructor initializes each of these data members to its declared value instead.definition

If an exception declares or inherits any data members, the generated class provides a second constructor that accepts one parameter for each data
member so that you can construct and initialize an instance in a single statement (instead of first having to construct the instance and then assign to its
members). For a derived exception, this constructor accepts one argument for each base exception member, plus one argument for each derived
exception member, in base-to-derived order.

The generated class may include an additional constructor if the exception declares or inherits any .optional data members

The Slice compiler generates overloaded versions of all constructors that accept a trailing argument for preserving an exception chain.Throwable

Back to Top ^

Java Mapping for Run-Time Exceptions
The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from LocalEx

 (which, in turn, derives indirectly from).ception java.lang.RuntimeException

LocalException implements a method that is inherited by its derived exceptions, so you can make member-wise shallow copies of exceptions.clone

Recall the for user and run-time exceptions. By catching exceptions at the appropriate point in the hierarchy, you can handle inheritance diagram
exceptions according to the category of error they indicate:

LocalException
This is the root of the inheritance tree for run-time exceptions.

UserException
This is the root of the inheritance tree for user exceptions.

TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException java.
.lang.Exception

You will probably have little need to catch run-time exceptions as their most-derived type and instead catch them as ; the fine-grained LocalException
error handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule are the
exceptions related to and life cycles, which you may want to catch explicitly. These exceptions are and facet object FacetNotExistException ObjectN

, respectively.otExistException

https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions#RunTimeExceptions-InheritanceHierarchyforExceptions
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Object+Life+Cycle

Back to Top ^

See Also

User Exceptions
Run-Time Exceptions
Java Mapping for Optional Data Members
JavaBean Mapping
Versioning
Object Life Cycle

https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Mapping#CustomizingtheJavaMapping-JavaBeanMapping
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Object+Life+Cycle
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Constants
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Interfaces

	Java Mapping for Exceptions

