Parameter Passing in Java
%

Previous
Parameter passing on the server side follows the rules for the client side. Additionally, every operation receives a trailing parameter of type Cur r ent . For

example, the name operation of the Node interface has no parameters, but the corresponding name method of the servant interface has a single parameter
of type Cur r ent . We will ignore this parameter for now.

@ The parameter-passing rules change somewhat when using the asynchronous mapping.

On this page:

® Server-Side Mapping for Parameters in Java
® Thread-Safe Marshaling in Java

© Solution 1: Copying

O Solution 2: Copy on Write

© Solution 3: Marshal Immediately

Server-Side Mapping for Parameters in Java

The servant mapping for operations is consistent with the proxy mapping. To illustrate the rules for the Java mapping, consider the following interface:

Slice
nodul e M
{
interface Exanple
{
string opl();
voi d op2(out string sout);
string op3(string sin, out string sout);
optional (1) string op4();
voi d op5(out optional (1) string sout);
optional (1) string op6(out optional (2) string sout);
}

The generated skeleton interface looks like this:

https://doc.zeroc.com/display/IceMatlab/Server-Side+Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Java
https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Java

Java

public interface Exanpl e extends com zeroc. | ce. Obj ect

{
public static class Op3Result
{
public Op3Result();
public Op3Result(String returnValue, String sout);
public String returnVal ue;
public String sout;
}
public static class Qp6Resul t
{
public Op6Result();
public Op6Result(java.util.Optional<java.lang.String> returnVal ue,
java.util.Optional <java.lang. String> sout);
public Op6Result(java.lang.String returnValue, java.lang.String sout);
public java.util.Optional <java.lang. String> returnVal ue;
public java.util.Optional <java.lang. String> sout;
}
String opl(com zeroc.lce.Current current);
String op2(com zeroc.lce.Current current);
Exanpl e. @3Result op3(String sin, comzeroc.lce.Current current);
java.util.Optional <java.lang. String> op4(com zeroc.lce.Current current);
java.util.Optional <java.lang. String> op5(com zeroc.|ce.Current current);
Exanpl e. Op6Resul t op6(com zeroc.|lce.Current current);
}

You'll notice that op1 and op2 have same signature because the mapping rules state that an operation returning a single value shall use that type as its
return value, regardless of whether the Slice operation declared it as the return type or as an out parameter. (The same is true for op4 and op5.) The
proxy and servant methods also share the Resul t types that are generated when an operation returns more than one value, as shown above for op3 and
op6. When at least one of the return value and out parameters is optional, the Resul t type provides two overload constructors that takes the return value
followed by all out parameters: one with the j ava. uti| . Opti onal types, and one without j ava. util . Opti onal types; with the latter, a null value for
an optional parameter is interpreted as meaning "not set".

The only difference between the client and server sides is the type of the extra trailing parameter.

Back to Top

Thread-Safe Marshaling in Java

The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference. For Java
applications, this can affect servant methods that return instances of Slice classes, structures, sequences, or dictionaries.

The potential for corruption occurs whenever a servant returns data by reference, yet continues to hold a reference to that data. For example, consider the
following servant implementation:

Java

public class Gidl inplements Gid

{
Gridl()
{
_grid =1/
}
public int[][] getGid(Current current)
{
return _grid;
}
public void setValue(int x, int y, int val, Current current)
{
_grid[x][y] = val;
}
private int[][] _grid;
}

Suppose that a client invoked the get Gr i d operation. While the Ice run time marshals the returned array in preparation to send a reply message, it is
possible for another thread to dispatch the set Val ue operation on the same servant. This race condition can result in several unexpected outcomes,
including a failure during marshaling or inconsistent data in the reply to get G i d. Synchronizing the get Gri d and set Val ue operations would not fix the
race condition because the Ice run time performs its marshaling outside of this synchronization.

Solution 1: Copying

One solution is to implement accessor operations, such as get G i d, so that they return copies of any data that might change. There are several
drawbacks to this approach:

® Excessive copying can have an adverse affect on performance.
® The operations must return deep copies in order to avoid similar problems with nested values.
® The code to create deep copies is tedious and error-prone to write.

Solution 2: Copy on Write

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, set Val ue replaces _gri d with a copy
that contains the new element, leaving the previous contents of _gr i d unchanged:

Java

public class Gidl inplements Gid

{
public synchronized int[][] getGid(Current current)
{
return _grid;
}
public synchronized void setValue(int x, int y, int val, Current current)
{
int[][] newGid = // shallow copy...
newdid[x][y] = val;
_grid = new&id;
}
}

This allows the Ice run time to safely marshal the return value of get Gri d because the array is never modified again. For applications where data is read
more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make copies. Furthermore,
intelligent use of shallow copying can minimize the overhead in mutating operations.

Solution 3: Marshal Immediately

Finally, a third approach is to modify the servant mapping using metadata in order to force the marshaling to occur immediately within your
synchronization. Annotating a Slice operation with the mar shal ed- r esul t metadata directive changes the signature of the corresponding servant
method, but only if that operation returns one or more of the mutable types listed earlier. The metadata directive has the following effects:

® For an operation op that returns multiple values and at least one of those values has a mutable type, the name of the generated OpResul t class
becomes OpMar shal edResul t instead and the return type of the servant method becomes QpMar shal edResul t .

® For an operation op that returns a single value whose type is mutable, the Slice compiler generates an OpMar shal edResul t class and the
return type of the servant method becomes OpMar shal edResul t .

® The constructor for OpMar shal edResul t takes an extra argument of type Cur r ent . The servant must supply the Cur r ent in order for the
results to be marshaled correctly.

The metadata directive also affects the asynchronous mapping but has no effect on the proxy mapping, nor does it affect the servant mapping of Slice

operations that return voi d or return only immutable values.

@ You can also annotate an interface with the mar shal ed-r esul t metadata and it will be applied to all of the interface's operations.

After applying the metadata, we can now implement the Gri d servant as follows:

Java

public class Gidl inplenents Gid

{
public synchroni zed Gid. Get Gi dvarshal edResult getGrid(Current current)
{
return new Gid. Get GidMarshal edResult(_grid, curr); // _grid is marshaled i nmediately
}
public synchroni zed void setValue(int x, int y, int val, Current current)
{
_grid[x][y] =val; // this is safe
}
}

Here are more examples to demonstrate the mapping:

https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Dispatch+%28AMD%29+in+Java

Slice

class C{ ... }
struct S{ ... }
sequence<string> Seq;

interface Exanple

{
Cget);

["marshal ed-resul t"]
C get C2();

voi d getS(out S val);

["marshal ed-resul t"]
voi d getS2(out S val);

string getVal ues(string name, out Seq val);

["marshal ed-resul t"]
string getVal ues2(string name, out Seq val);

["anmd", "nmarshal ed-result"]
string getVal uesAM)(string nane, out Seq val);

Review the generated code below to see the changes that the presence of the metadata causes in the servant method signatures:

Java

public interface Exanpl e extends com zeroc. | ce. Obj ect

{
public static class Get C2Mar shal edResul t
{
publ i c Get C2Mar shal edResul t (C returnVal ue, Current current);
}
public static class Get S2Marshal edResul t
{
public Get S2Mar shal edResul t (S returnVal ue, Current current);
}
public static class GetVal uesResult
{
public GetVal uesResult();
public GetVal uesResult(String returnValue, String[] val);
public String returnVal ue;
public String[] val;
}
public static class GetVal ues2Marshal edResul t
{
public GetVal ues2Marshal edResul t (String returnValue, String[] val, Current current);
}
public static class GetVal uesAVMDResul t
{
publ i c GetVal uesANMDResul t ()
{
}
public GetVal uesAVDResult (String returnValue, String[] val)
{
this.returnVval ue = returnVval ue;
this.val = val;
}
public String returnVval ue;
public String[] val;
}
public static class GetVal uesAVDVar shal edResult i npl ements com zeroc. | ce. Marshal edResul t
{
publ i c GetVal uesANMDMar shal edResul t (String returnVal ue, String[] val, com zeroc.lce.Current current);
}

C getC(com zeroc.lce.Current current);

Get C2Mar shal edResult get C2(com zeroc.lce.Current current);

S get S(com zeroc.lce.Current current);

Get S2Mar shal edResul t get S2(com zeroc. | ce. Current current);

Cet Val uesResul t get Val ues(String nane, com zeroc.lce.Current current);

Cet Val ues2Mar shal edResul t get Val ues2(String name, com zeroc.|ce.Current current);

java.util.concurrent. Conpl eti onSt age<Get Val uesAMDMar shal edResul t > get Val uesAVMDAsync(String nane, com zeroc.
Ice.Current current);

}

Back to Top

See Also

® Server-Side Java Mapping for Interfaces

https://doc.zeroc.com/display/IceMatlab/Server-Side+Java+Mapping+for+Interfaces

® Java Mapping for Operations
® Raising Exceptions in Java
® The Current Object

p= »

Previous MNext

https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Java
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Server-Side+Java+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Java

	Parameter Passing in Java

