Initialization in Java Compat
&

Previous

Every Ice-based application needs to initialize the Ice run time, and this initialization returns an | ce. Conmruni cat or object.

A Communi cat or is a local Java object that represents an instance of the Ice run time. Most Ice-based applications create and use a single Comruni cat o
object, although it is possible and occasionally desirable to have multiple Comruni cat or objects in the same application.

You initialize the Ice run time by calling I ce. Util.initialize,for example:

Java Compat

public static void main(String[] args)

{
I ce. Communi cator conmunicator = lce. UWil.initialize(args);
}
Util.initialize acceptsthe argument vector that is passed to mai n by the operating system. The method scans the argument vector for any comman
d-line options that are relevant to the Ice run time. If anything goes wrong during initialization, Ut i | . i ni ti al i ze throws an exception.
@ The semantics of Java arrays prevents this simple Uti | . i ni ti al i ze from modifying the argument vector. You can use another overload of Ut

il.initialize toreceive anargument vector with all Ice-related arguments removed.

Before leaving your nei n method, you must call Communi cat or . dest r oy. The dest r oy method is responsible for finalizing the Ice run time. In
particular, in an Ice server, dest r oy waits for any operation implementations that are still executing to complete. In addition, dest r oy ensures that any
outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your mai n me
thod to terminate without calling dest r oy first.

The general shape of our mai n method becomes:

Java Compat

public class App
{ public static void main(String[] args)
{
int status = 0;
| ce. Communi cat or conmuni cator = null;
try
{

/'l correct but suboptimal, see bel ow
comuni cator = Ice.Uil.initialize(args);
/1

}

cat ch(Exception e)

{
e.printStackTrace();
status = 1,

}

i f(communicator != null)

{

/1 correct but suboptimal, see bel ow
communi cat or. destroy();

}

System exi t (status);

This code is a little bit clunky, as we need to make sure the communicator gets destroyed in all paths, including when an exception is thrown.

https://doc.zeroc.com/display/IceMatlab/Selecting+the+Java+Compat+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Java+Compat+Mapping
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization

Fortunately, the Communi cat or interface implements j ava. | ang. Aut oCl oseabl e: this allows us to call i ni ti al i ze in a try-with-resources

statement, which closes (destroys) the communicator automatically, without an explicit call to the dest r oy method.

The preferred way to initialize the Ice run time in Java is therefore:

Java Compat

public class App

public static void nmain(String[] args)

{
{
}
}
See Also

int status = 0;
try(lce. Conmuni cator conmunicator = Ice. Uil.initialize(args))

{

/1
} /1 conmmunicator is destroyed autonatically here
System exi t (status);

® Communicators
® Communicator Initialization
® Application Helper Class

-

Previous

Back to Top »

https://docs.oracle.com/javase/8/docs/api/java/lang/AutoCloseable.html
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Selecting+the+Java+Compat+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Java+Compat+Mapping

	Initialization in Java Compat

