Asynchronous Method Invocation (AMI) in Java Compat
&

Previous

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports both
oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the calling thread. When a client issues an AMI
request, the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery. The
application can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

® Basic Asynchronous APl in Java
© Asynchronous Proxy Methods in Java
© Asynchronous Exception Semantics in Java
AsyncResult Interface in Java
Polling for Completion in Java
Generic Completion Callbacks in Java
Sharing State Between begin_ and end_ Methods in Java
Type-Safe Completion Callbacks in Java
© Type-Safe Callback Classes in Java
© Type-Safe Lambda Functions in Java
Asynchronous Oneway Invocations in Java
Flow Control in Java
Asynchronous Batch Requests in Java
Concurrency Semantics for AMI in Java

Basic Asynchronous API in Java

Consider the following simple Slice definition:

Slice

nmodul e Denp

{

interface Enpl oyees

{
string getNanme(int nunber);

}

Back to Top »

Asynchronous Proxy Methods in Java

Besides the synchronous proxy methods, sl i ce2j ava generates the following asynchronous proxy methods:

Java Compat

public interface Enpl oyeesPrx extends |ce. CbjectPrx

{
/1
public Ice. AsyncResult begi n_get Nane(int nunber);
public Ice. AsyncResult begi n_get Nane(int nunber, java.util.Map<String, String> _ ctx);
public String end_get Nane(lce. AsyncResult _ result);
}

@ Four additional overloads of begi n_get Nane are generated for use with generic completion callbacks and type-safe completion callbacks.

https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Compat+Mapping
https://doc.zeroc.com/pages/viewpage.action?pageId=18262855

As you can see, the single get Nanme operation results in begi n_get Name and end_get Name methods. (The begi n_ method is overloaded so you can
pass a per-invocation context.)

®* The begi n_get Nane method sends (or queues) an invocation of get Nane. This method does not block the calling thread.

®* The end_get Name method collects the result of the asynchronous invocation. If, at the time the calling thread calls end_get Nang, the result is
not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some time before the call to end_
get Nane, the method returns immediately with the result.

A client could call these methods as follows:

Java Compat

Enpl oyeesPrx e = ...;
I ce. AsyncResult r = e.begin_get Name(99);

/1 Continue to do other things here...

String name = e.end_get Name(r);

Because begi n_get Nane does not block, the calling thread can do other things while the operation is in progress.

Note that begi n_get Nane returns a value of type AsyncResul t . This value contains the state that the Ice run time requires to keep track of the
asynchronous invocation. You must pass the AsyncResul t that is returned by the begi n_ method to the corresponding end_ method.

The begi n_ method has one parameter for each in-parameter of the corresponding Slice operation. Similarly, the end_ method has one out-parameter for
each out-parameter of the corresponding Slice operation (plus the AsyncResul t parameter). For example, consider the following operation:

Slice

doubl e op(int inpl, string inp2, out bool outpl, out |ong outp2);

The begi n_op and end_op methods have the following signature:

Java Compat

I ce. AsyncResult begin_op(int inpl, String inp2);
I ce. AsyncResult begin_op(int inpl, String inp2, java.util.Map<String, String> _ ctx);
doubl e end_op(I ce. Bool eanHol der outpl, Ice.LongHol der outp2, |ce.AsyncResult r);

Back to Top

Asynchronous Exception Semantics in Java

If an invocation raises an exception, the exception is thrown by the end_ method, even if the actual error condition for the exception was encountered
during the begi n_ method ("on the way out"). The advantage of this behavior is that all exception handling is located with the code that calls the end_ met
hod (instead of being present twice, once where the begi n_ method is called, and again where the end_ method is called).

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the begi n_ method throws Conmrun
i cat or Dest royedExcept i on. This is necessary because, once the run time is finalized, it can no longer throw an exception from the end_ method.

The only other exception that is thrown by the begi n_ and end_ methods is j ava. | ang. I | | egal Ar gunent Except i on. This exception indicates that
you have used the API incorrectly. For example, the begi n_ method throws this exception if you call an operation that has a return value or out-
parameters on a oneway proxy. Similarly, the end_ method throws this exception if you use a different proxy to call the end_ method than the proxy you
used to call the begi n_ method, or if the AsyncResul t you pass to the end_ method was obtained by calling the begi n_ method for a different
operation.

Back to Top

AsyncResul t Interface in Java

The AsyncResul t that is returned by the begi n_ method encapsulates the state of the asynchronous invocation:

https://doc.zeroc.com/display/IceMatlab/Request+Contexts

Java Compat

public interface AsyncResult

{
public void cancel ();
publ i ¢ Communi cat or get Communi cator();
public Connection get Connection();
public OnojectPrx getProxy();
public String getQperation();
public bool ean i sConpl eted();
public void waitForConpl eted();
public bool ean isSent();
public void waitForSent();
public void throwLocal Exception();
publ i c bool ean sent Synchronousl y();
}

The methods have the following semantics:

voi d cancel ()

This method prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends one. can
cel is alocal operation and has no effect on the server. A canceled invocation is considered to be completed, meaning i sConpl et ed returns
true, and the result of the invocation is an | ce. | nvocat i onCancel edExcept i on.

Conmruni cat or get Cormuni cat or ()
This method returns the communicator that sent the invocation.

Connecti on get Connecti on()

This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method returns a
nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The get Connect i
on method only returns a non-nil value when the AsyncResul t object is obtained by calling begi n_f | ushBat chRequest s on a Connect i on
object.

oj ect Prx get Proxy()
This method returns the proxy that was used to call the begi n_ method, or nil if the AsyncResul t object was not obtained via an asynchronous
proxy invocation.

String getOperation()
This method returns the name of the operation.

bool ean i sConpl et ed()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the end_ method will not block
the caller. Otherwise, if the result is not yet available, the method returns false.

voi d wai t For Conpl et ed()
This method blocks the caller until the result of an invocation becomes available.

bool ean isSent ()

When you call the begi n_ method, the Ice run time attempts to write the corresponding request to the client-side transport. If the transport cannot
accept the request, the Ice run time queues the request for later transmission. i sSent returns true if, at the time it is called, the request has been
written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or an exception occurred before the
request could be sent, i sSent returns false.

voi d wait For Sent ()

This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After wai t For Sent retu
s, i sSent returns true if the request was successfully written to the client-side transport, or false if an exception occurred. In the case of a
failure, you can call the corresponding end_ method or t hr owlL.ocal Except i on to obtain the exception.

voi d throwLocal Excepti on()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, t hr owLocal Except i on does
nothing.

bool ean sent Synchronousl y()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, sent Sy
nchr onousl y returns false (independent of whether the request is still in the queue or has since been written to the client-side transport).

Back to Top

Polling for Completion in Java

The AsyncResul t methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following simple
interface to transfer files from client to server:

Slice

interface FileTransfer

{
}

voi d send(int offset, ByteSeq bytes);

The client repeatedly calls send to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naive way to transmit a file would be
along the following lines:

Java Compat

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;

int offset = 0;
while(!file.eof())

{
byte[] bs;
bs = file.read(chunkSi ze); // Read a chunk
ft.send(of fset, bs); /1 Send the chunk
of fset += bs.|ength;

}

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive the
data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing — the
client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Java Compat

FileHandl e file = open(...);
Fil eTransferPrx ft = ...;
int chunkSize = ...;

int offset = 0;

Li nkedLi st <l ce. AsyncResult> results = new Li nkedLi st <l ce. AsyncResul t >();
int nunRequests = 5;

while(!file.eof())

{
byte[] bs;
bs = file.read(chunkSize);
/1 Send up to nunmRequests + 1 chunks asynchronously.
I ce. AsyncResult r = ft.begin_send(offset, bs);
of fset += bs.length;
/1 Vit until this request has been passed to the transport.
r.waitForSent();
resul ts.add(r);
/1 Once there are nore than nunRequests, wait for the |east
/1 recent one to conplete.
whil e(resul ts.size() > nunRequests)
{
Ice. AsyncResult r = results.getFirst();
resul ts.renoveFirst();
r.wai t For Conpl et ed() ;
}
}

/1 Wait for any remaining requests to conplete.
whil e(results.size() > 0)

{
Ice. AsyncResult r = results.getFirst();
results.renmoveFirst();
r.wai t For Conpl et ed() ;

}

With this code, the client sends up to nunRequests + 1 chunks before it waits for the least recent one of these requests to complete. In other words, the
client sends the next request without waiting for the preceding request to complete, up to the limit set by nunRequest s. In effect, this allows the client to
"keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of nunRequest s depend on the bandwidth of the network as well as the amount of time taken by the server to
process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more requests no
longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the theoretical bandwidth limit
of a native socket connection.

Back to Top

Generic Completion Callbacks in Java

The begi n_ method is overloaded to allow you to provide completion callbacks. Here are the corresponding methods for the get Nane operation:

Java Compat

I ce. AsyncResul t begi n_get Nane(i nt nunber, |ce.Callback __ch);

I ce. AsyncResul t begi n_get Nane(i nt nunber,
java.util.Map<String, String> __ctx,
Ice. Cal |l back __ch);

The second version of begi n_get Nanre lets you override the default context. Following the in-parameters, the begi n_ method accepts a parameter of
type | ce. Cal | back, which is a callback class with a conpl et ed method that you must provide. The Ice run time invokes the conpl et ed method when
an asynchronous operation completes. For example:

Java Compat

public class MCall back extends Ice. Callback

{
public void conpleted(lce. AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r. get Proxy();
try
{
String name = e.end_get Name(r);
Systemout.println("Nane is: " + nane);
}
catch(lce. Local Excepti on ex)
{
Systemerr.println("Exception is: " + ex);
}
}
}

Note that your callback class must derive from | ce. Cal | back. The implementation of your callback method must call the end_ method. The proxy for the
call is available via the get Pr oxy method on the AsyncResul t that is passed by the Ice run time. The return type of get Proxy is | ce. Obj ect Pr x, so
you must down-cast the proxy to its correct type.

Your callback method should catch and handle any exceptions that may be thrown by the end_ method. If an operation can throw user exceptions, this
means that you need an additional catch handler for | ce. User Except i on (or catch all possible user exceptions explicitly). If you allow an exception to
escape from the callback method, the Ice run time produces a log entry by default and ignores the exception. (You can disable the log message by setting
the property | ce. War n. AM Cal | back to zero.)

To inform the Ice run time that you want to receive a callback for the completion of the asynchronous call, you pass the callback instance to the begi n_ me
thod:

Java Compat
Enpl oyeesPrx e = .. .;

M/Cal | back cb = new MyCal | back();
e. begi n_get Name(99, cb);

This is often written using an anonymous class instead:

https://doc.zeroc.com/pages/viewpage.action?pageId=18263661#Ice.Warn.*-Ice.Warn.AMICallback

Java Compat

Enpl oyeesPrx e = ...;

e. begi n_get Name(

99,
new | ce. Cal | back()
{
public void conpleted(lce. AsyncResult r)
{
Enpl oyeesPrx p = (Enpl oyeesPrx)r. get Proxy();
try
{
String name = p.end_get Name(r);
Systemout.println("Nane is: " + nane);
}
catch(|l ce. Local Exception ex)
{
Systemerr.println("Exception: " + ex);
}
}
b

An anonymous class is especially useful for callbacks that do only a small amount of work because the code that starts the call and the code that
processes the results are physically close together.

Back to Top

Sharing State Between begi n_ and end_ Methods in Java

It is common for the end_ method to require access to some state that is established by the code that calls the begi n_ method. As an example, consider
an application that asynchronously starts a number of operations and, as each operation completes, needs to update different user interface elements with
the results. In this case, the begi n_ method knows which user interface element should receive the update, and the end_ method needs access to that

element.

Assuming that we have a W dget class that designates a particular user interface element, you could pass different widgets by storing the widget to be
used as a member of your callback class:

Java Compat

public class MCall back extends Ice. Callback

{
public MyCal | back(W dget w)
{
_w=w
}
private Wdget _w;
public void conpl eted(lce. AsyncResult r)
{
Enpl oyeesPrx e = (Enpl oyeesPrx)r. get Proxy();
try
{
String name = e.end_get Name(r);
_w.witeString(nane);
}
catch(| ce. Local Exception ex)
{
Systemerr.println("Exception is: " + ex);
}
}
}

For this example, we assume that widgets have a wr i t eSt ri ng method that updates the relevant Ul element.

When you call the begi n_ method, you pass the appropriate callback instance to inform the end_ method how to update the display:

Java Compat

Enpl oyeesPrx e
W dget w dget 1
W dget widget2 = ...;

/1 1nvoke the getNanme operation with different wi dget call backs.
e. begi n_get Name(99, new MyCal | back(w dget1));
e. begi n_get Narme(24, new MyCal | back(w dget 2));

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where its
results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback instance to multiple
invocations. (If you do this, your callback methods may need to use synchronization.)

Back to Top

Type-Safe Completion Callbacks in Java

The generic callback API is not entirely type-safe:
® You must down-cast the return value of get Pr oxy to the correct proxy type before you can call the end_ method.
® You must call the correct end_ method to match the operation called by the begi n_ method.
® You must remember to catch exceptions when you call the end_ method; if you forget to do this, you will not know that the operation failed.

sl i ce2j ava generates an additional type-safe API that takes care of these chores for you. To use type-safe callbacks, you can either implement a
callback class or use lambda functions.

Type-Safe Callback Classes in Java

A callback class must define two callback methods:

® aresponse method that is called if the operation succeeds
® anexcepti on method that is called if the operation raises an exception

The class must derive from the base class that is generated by sl i ce2j ava. The name of this base class is <npbdul e>. Cal | back_<i nt er f ace>_<ope
rati on>. Here is a callback class for an invocation of the get Nane operation:

Java Compat

public class MCal | back extends Denp. Cal | back_Enpl oyees_get Name

{
public void response(String nane)
{
Systemout.println("Nane is: " + nane);
}
public void exception(lce.Local Exception ex)
{
Systemerr.println("Exception is: " + ex);
}
}

The r esponse callback parameters depend on the operation signature. If the operation has non-voi d return type, the first parameter of the r esponse call
back is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice operation, in the order of
declaration.

The except i on callback is invoked if the invocation fails because of an Ice run time exception. If the Slice operation can also raise user exceptions, your
callback class must supply an additional overloading of except i on that accepts an argument of type | ce. User Except i on.

The proxy methods are overloaded to accept this callback instance:

Java Compat

I ce. AsyncResul t begi n_get Nane(i nt nunber,
Cal | back_Enpl oyees_get Name __cb);

I ce. AsyncResul t begi n_get Name(i nt nunber,

java.util.Map<String, String> _ ctx,
Cal | back_Enpl oyees_get Name __cb);

You pass the callback to an invocation as you would with the generic API:

Java Compat

Enpl oyeesPrx e = .. .;

M/Cal | back cb = new MyCal | back();
e. begi n_get Name(99, cb);

Back to Top

Type-Safe Lambda Functions in Java

You can implement your type-safe callbacks using in-line lambda functions. The proxy methods are overloaded to accept these functions:

Java Compat

I ce. AsyncResul t begi n_get Nane(i nt nunber,
I cel nternal . Functi onal _Generi cCal | back1l<String> __responseCb,
I cel nternal . Functional _GenericCal | backl<l ce. Excepti on> __excepti onCh);

I ce. AsyncResul t begi n_get Nanme(i nt nunber,
java.util.Map<String, String> _ ctx,

I cel nternal . Functi onal _GenericCal | back1l<String> __responseCb,
I cel nternal . Functi onal _Generi cCal | back1l<l ce. Exception> __exceptionCb);

The names of the internal interfaces used in the API are not important; what matters are their parameterized types, which tell you the arguments that your
lambda functions must accept. For example, we can call begi n_get Nane as follows:

Java Compat

Enpl oyeesPrx e = .. .;

e. begi n_get Name(99,
(String nane) ->

{
Systemout. println("Name is: " + nanme);
b
(lce. Exception ex) ->
{
Systemerr.println("Exception is: " + ex);
IR

Back to Top

Asynchronous Oneway Invocations in Java

You can invoke operations via oneway proxies asynchronously, provided the operation has voi d return type, does not have any out-parameters, and does
not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values or raises a user exception, the begi n_ me
thod throws an | | | egal Ar gunent Excepti on.

The callback methods looks exactly as for a twoway invocation. For the generic API, the Ice run time does not call the conpl et ed callback method unless
the invocation raised an exception during the begi n_ method ("on the way out"). For the type-safe API, the r esponse method is never called.

Back to Top

Flow Control in Java

Asynchronous method invocations never block the thread that calls the begi n_ method: the Ice run time checks to see whether it can write the request to
the local transport. If it can, it does so immediately in the caller's thread. (In that case, AsyncResul t . sent Synchr onousl y returns true.) Alternatively, if
the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request internally for later transmission in the
background. (In that case, AsyncResul t . sent Synchr onousl y returns false.)

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests pile
up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some threshold,
the client stops invoking more operations until some of the queued operations have drained out of the local transport.

For the generic API, you can override the sent method:

Java Compat

public class MCal |l back extends Ice. Call back

{ public void conpl eted(lce. AsyncResult r)
{
/1
}
public void sent(lce.AsyncResult r)
{
/1
}
}

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Java Compat

e. begi n_get Name(99, new MyCal | back());

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent method from the thread that calls the begi n_ m
ethod. On the other hand, if the run time has to queue the request, it calls the sent method from a different thread once it has written the request to the
local transport. In addition, you can find out from the AsyncResul t that is returned by the begi n_ method whether the request was sent synchronously
or was queued, by calling sent Synchr onousl y.

For the generic API, the sent method has the following signature:

Java Compat

voi d sent(lce. AsyncResult r);

For the type-safe API, the signature is:

Java Compat

voi d sent (bool ean sent Synchronously);

For the generic API, you can find out whether the request was sent synchronously by calling sent Synchr onousl y on the AsyncResul t . For the type-
safe API, the boolean sent Synchr onousl y parameter provides the same information.

The sent methods allow you to limit the number of queued requests by counting the number of requests that are queued and decrementing the count
when the Ice run time passes a request to the local transport.

Back to Top »

Asynchronous Batch Requests in Java

You can invoke operations via batch oneway proxies asynchronously, provided the operation has voi d return type, does not have any out-parameters,
and does not raise user exceptions. If you call the begi n_ method on a oneway proxy for an operation that returns values or raises a user exception, the b
egi n_ method throws an | | | egal Ar gunent Excepti on.

A batch oneway invocation never calls the generic or type-safe callbacks unless an error occurs before the request is queued. The returned | ce.
AsyncResul t for a batch oneway invocation is always completed and indicates the successful queuing of the batch invocation. The returned result can
also be marked completed if an error occurs before the request is queued.

Applications that send batched requests can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method i ce_f | ushBa
t chRequest s performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message can be
sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begi n_i ce_fl ushBat chRequest s and end_i ce_f | ushBat chRequest s are proxy methods that flush any batch requests queued by that proxy.

In addition, similar methods are available on the communicator and the Connect i on object that is returned by AsyncResul t . get Connect i on. These
methods flush batch requests sent via the same communicator and via the same connection, respectively.

Back to Top »

Concurrency Semantics for AMI in Java

The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the thread calling the be
gi n_ method if the request could be sent synchronously. In the sent callback, you know which thread is calling the callback by looking at the sent Synch
ronousl y member or parameter.

Back to Top »

See Also

® Request Contexts
® Batched Invocations
® Collocated Invocation and Dispatch

pe

Previous

https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Collocated+Invocation+and+Dispatch
https://doc.zeroc.com/display/IceMatlab/Customizing+the+Java+Compat+Mapping
https://doc.zeroc.com/pages/viewpage.action?pageId=18262855

	Asynchronous Method Invocation (AMI) in Java Compat

