
1.

2.
3.

JavaScript Mapping for Classes

On this page:

Basic JavaScript Mapping for Classes
Inheritance from Ice.Value in JavaScript
Class Constructors in JavaScript
Class Data Members in JavaScript
Class Operations in JavaScript
Value Factories in JavaScript

Basic JavaScript Mapping for Classes
A Slice is mapped to a JavaScript class with the same name. For each Slice data member, the JavaScript instance contains a corresponding class
property (just as for structures and exceptions). Consider the following class definition:

Slice

class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

The Slice compiler generates the following code for this definition:

JavaScript

class TimeOfDay extends Ice.Value
{
 constructor(hour = 0, minute = 0, second = 0)
 {
 super();
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
}

There are a number of things to note about the generated code:

The generated class inherits from . Note that is not the same as . In other words, TimeOfDay Ice.Value Ice.Value Ice.ObjectPrx
you cannot pass a class where a proxy is expected and vice versa.
The generated class provides a constructor that accepts a value for each data member.
The generated class defines a property for each Slice data member.

There is quite a bit to discuss here, so we will look at each item in turn.

Back to Top ^

Inheritance from in JavaScriptIce.Value
As for Slice interfaces, the generated type for a Slice class implicitly inherits from a common base type. However, the type inherits from insteaIce.Value
d of (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a proxy is expected (and Ice.ObjectPrx
vice versa) because the base types for classes and proxies are not compatible.

Ice.Value defines a number of member functions:

https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/slice2js+Command-Line+Options
https://doc.zeroc.com/display/IceMatlab/Classes

JavaScript

class Ice.Value
{
 static ice_staticId() {}
 ice_id() {}
 ice_preMarshal() {}
 ice_postUnmarshal() {}
 ice_getSlicedData() {}
}

The member functions of behave as follows:Ice.Value

ice_staticId
This function returns the static of a class.type ID

ice_id
This function returns the actual run-time for a class. If you call through a reference to a base instance, the returned type ID is the type ID ice_id
actual (possibly more derived) type ID of the instance.

ice_preMarshal
The Ice run time invokes this function prior to marshaling the object's state, providing the opportunity for a subtype to validate its declared data
members.

ice_postUnmarshal
The Ice run time invokes this function after unmarshaling an object's state. A subtype typically overrides this function when it needs to perform
additional initialization using the values of its declared data members.
ice_getSlicedData
This functions returns the object if the value has been during un-marshaling or otherwise.SlicedData sliced null

Back to Top ^

Class Constructors in JavaScript
The type generated for a Slice class provides a constructor that initializes each data member to a default value appropriate for its type:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration

struct Default-constructed value

Numeric Zero

bool False

sequence Null

dictionary Null

class/interface Null

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slice
. The constructor initializes each of these data members to its declared value instead.definition

The constructor accepts one argument for each member of the class. This allows you to create and initialize an instance in a single statement, for example:

JavaScript

let tod = new TimeOfDayI(14, 45, 00); // 14:45pm

For derived classes, the constructor requires an argument for every member of the class, including inherited members. For example, consider the the
definition from once more:Class Inheritance

https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Class+Inheritance

Slice

class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

class DateTime extends TimeOfDay
{
 short day; // 1 - 31
 short month; // 1 - 12
 short year; // 1753 onwards
}

The constructors generated for these classes are similar to the following:

JavaScript

class TimeOfDay extends Ice.Value
{
 constructor(hour = 0, minute = 0, second = 0)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }
}

class DateTime extends TimeOfDay
{
 constructor(hour, minute, second, day = 0, month = 0, year = 0)
 {
 super(hour, minute, second);
 this.day = day;
 this.month = month;
 this.year = year;
 }
}

Pass as the value of any that you wish to remain unset.undefined optional data member

Back to Top ^

Class Data Members in JavaScript
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the generated type
defines a corresponding property.

Optional data members use the same mapping as required data members, but an optional data member can also be set to to indicate that the undefined
member is unset. A well-behaved program must compare an optional data member to before using the member's value:undefined

https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

JavaScript

let v = ...
if(v.optionalMember === undefined)
{
 console.log("optionalMember is unset")
}
else
{
 console.log("optionalMember =", v.optionalMember)
}

Back to Top ^

Class Operations in JavaScript

With the JavaScript mapping, operations in classes are not mapped at all into the corresponding JavaScript class. The generated JavaScript class is the
same whether the Slice class has operations or not.

The Slice to JavaScript compiler also generates a separate class, which can be used to implement an Ice object with these Disp<class-name>
operations. For example:

Slice

class FormattedTimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
 string tz;
 string format();
}

JavaScript

class FormattedTimeOfDay extends Ice.Value
{
 // ... operation format() not mapped at all here
}

// Disp class for servant implementation
class FormattedTimeOfDayDisp extends Ice.Object
{
 // ...
}

Back to Top ^

Value Factories in JavaScript

Deprecated Feature

Operations on classes are deprecated as of Ice 3.7. Skip this section unless you need to communicate with old applications that rely on this
feature.

While value factories are necessary when using classes with operations (a now deprecated feature), value factories may be used for any kind of
class and are not deprecated.

Value factories allow you to create classes derived from the JavaScript class generated by the Slice compiler, and tell the Ice run time to create instances
of these classes when unmarshaling. For example, with the following simple interface:

Slice

interface Time
{
 TimeOfDay get();
}

The Ice run time will by default create and return a plain instance.TimeOfDay

If you wish, you can create your own custom derived class, and tell Ice to create and return these instances instead. For example:

JavaScript

var communicator = ...;
communicator.getValueFactoryManager().add(
 type => {
 if(type === TimeOfDay.ice_staticId())
 return new TimeOfDayI();
 return null;
 }, TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate an object with the type ID , it calls the registered factory, which returns a "::M::TimeOfDay" TimeOf
 instance to the Ice run time.DayI

Back to Top ^

See Also

Classes
Class Inheritance
Type IDs
Value Factories

https://doc.zeroc.com/display/IceMaster/.Value+Factories+v3.7.0
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Class+Inheritance
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/JavaScript+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/slice2js+Command-Line+Options

	JavaScript Mapping for Classes

