
MATLAB Mapping for Exceptions

On this page:

MATLAB Mapping for User Exceptions
Constructing a User Exception
Optional Data Members

MATLAB Mapping for Run-Time Exceptions

MATLAB Mapping for User Exceptions
Here is a fragment of the once more:Slice definition for our world time server

Slice

exception GenericError
{
 string reason;
}
exception BadTimeVal extends GenericError {}
exception BadZoneName extends GenericError {}

These exception definitions map as follows:

https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Constants
https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects

MATLAB

classdef GenericError < Ice.UserException
 properties
 reason char
 end
 methods
 function obj = GenericError(ice_exid, ice_exmsg, reason)
 ...
 end
 function id = ice_id(obj)
 ...
 end
 end
 ...
end

classdef BadTimeVal < GenericError
 methods
 function obj = BadTimeVal(ice_exid, ice_exmsg, reason)
 ...
 end
 function id = ice_id(obj)
 ...
 end
 end
 ...
end

classdef BadZoneName < GenericError
 methods
 function obj = BadZoneName(ice_exid, ice_exmsg, reason)
 ...
 end
 function id = ice_id(obj)
 ...
 end
 end
 ...
end

Each Slice exception is mapped to a MATLAB class with the same name. For each data member, the corresponding class contains a public property.
(Obviously, because and do not have members, the generated classes for these exceptions also do not have properties.)BadTimeVal BadZoneName

The inheritance structure of the Slice exceptions is preserved for the generated classes, so and inherit from .BadTimeVal BadZoneName GenericError

Each exception also defines an method, which returns the Slice type ID of the exception.ice_id

All user exceptions are derived from the base class . This allows you to handle all user exceptions generically by testing whether an UserException
instance is-a . , in turn, derives from , which derives from MATLAB's native class.UserException UserException Exception MException

Note that the generated exception classes contain other methods that are not shown. However, those methods are internal to the MATLAB mapping and
are not meant to be called by application code.

Here's an example that shows how we could handle these exceptions:

MATLAB

try
 % ...
catch ex
 if isa(ex, 'BadZoneName')
 % handle BadZoneName
 elseif isa(ex, 'BadTimeVal')
 % handle BadTimeVal
 elseif isa(ex, 'GenericError')
 % handle GenericError
 else
 % Allow any other exception to propagate
 rethrow(ex);
 end
end

Back to Top ^

Constructing a User Exception

The first two arguments for every exception constructor are an identifier and a message; these arguments are passed up the inheritance hierarchy to the ME
 class. You can pass empty strings for these arguments and the constructor will supply default values.xception

If an exception declares or inherits any data members, the constructor accepts one additional parameter for each data member so that you can construct
and initialize an instance in a single statement (instead of first having to construct the instance and then assign to its members). For a derived exception,
the constructor accepts one argument for each base exception member, plus one argument for each derived exception member, in base-to-derived order.

You must either call the constructor with no arguments or with arguments for all of the parameters.

Calling the constructor with no arguments assigns a default value appropriate for each member's type:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration

struct Default-constructed value

Numeric Zero

bool false

sequence Empty array

dictionary Instance of the mapped type

class Empty array

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slice
. The default constructor initializes each of these data members to its declared value instead.definition

Back to Top ^

Optional Data Members

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value toIce.Unset
indicate that the member is unset. A well-behaved program must test an optional data member before using its value:

https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

MATLAB

try
 ...
catch ex
 if ex.optionalMember ~= Ice.Unset
 fprintf('optionalMember = %s\n', ex.optionalMember);
 else
 fprintf('optionalMember is unset\n');
 end
end

The marker value has different semantics than an empty array. Since an empty array is a legal value for certain Slice types, the Ice run time Ice.Unset
requires a separate marker value so that it can determine whether an optional value is set. An optional value set to an empty array is considered to be set.
If you need to distinguish between an unset value and a value set to an empty array, you can do so as follows:

MATLAB

try
 ...
catch ex
 if ex.optionalMember == Ice.Unset
 fprintf('optionalMember is unset\n');
 elseif isempty(ex.optionalMember)
 fprintf('optionalMember is empty\n');
 else
 fprintf('optionalMember = %s\n', ex.optionalMember);
 end
end

Back to Top ^

MATLAB Mapping for Run-Time Exceptions
The Ice run time throws run-time exceptions for a number of pre-defined error conditions. All run-time exceptions directly or indirectly derive from LocalEx

 (which, in turn, derives indirectly from).ception MException

Recall the for user and run-time exceptions. By testing exceptions at the appropriate point in the hierarchy, you can handle exceptions inheritance diagram
according to the category of error they indicate:

LocalException
This is the root of the inheritance tree for run-time exceptions.

UserException
This is the root of the inheritance tree for user exceptions.

TimeoutException
This is the base exception for both operation-invocation and connection-establishment timeouts.

ConnectTimeoutException
This exception is raised when the initial attempt to establish a connection to a server times out.

For example, a can be handled as , , , or ConnectTimeoutException ConnectTimeoutException TimeoutException LocalException MExcept
.ion

You will probably have little need to test run-time exceptions for their most-derived type and instead test them as ; the fine-grained error LocalException
handling offered by the remainder of the hierarchy is of interest mainly in the implementation of the Ice run time. Exceptions to this rule are the exceptions
related to and life cycles, which you may want to handle explicitly. These exceptions are and facet object FacetNotExistException ObjectNotExist

, respectively.Exception

Back to Top ^

See Also

User Exceptions
Run-Time Exceptions

https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions#RunTimeExceptions-InheritanceHierarchyforExceptions
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Object+Life+Cycle
https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Run-Time+Exceptions

https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Constants
https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Interfaces

	MATLAB Mapping for Exceptions

