MATLAB Mapping for Classes
%

Previous

On this page:

Basic MATLAB Mapping for Classes
Inheritance from Ice::Value in MATLAB
Class Data Members in MATLAB
Value Factories in MATLAB

Class Constructors in MATLAB

Basic MATLAB Mapping for Classes

A Slice class is mapped to a MATLAB class with the same name. The generated class contains a public property for each Slice data member (just as for
structures and exceptions). Consider the following class definition:

Slice

cl ass Ti meCf Day

{

short hour; /l 0 - 23

short nminute; // 0 - 59

short second; // 0 - 59

string tz; /] e.g. GMI, PST, EDT...
}

The Slice compiler generates the following code for this definition:

MATLAB

cl assdef TinmeOfDay < |ce. Val ue

properties
hour int16
mnute intl6
second int16
tz char

end

met hods
function obj = Ti meO Day(hour, minute, second, tz)

end
function id = ice_id(obj)

end

end
met hods(Static)
function id = ice_staticld()

end
end
end

There are a several things to note about the generated code:
1. The generated class Ti meOf Day inherits from | ce. Val ue. This means that all classes implicitly inherit from Val ue, which is the ultimate
ancestor of all classes.
2. The generated class contains a public property for each Slice data member.
3. The generated class has a constructor that optionally takes one argument for each data member.
There is quite a bit to discuss here, so we will look at each item in turn.

Back to Top »


https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+MATLAB
https://doc.zeroc.com/display/IceMatlab/Classes

Inheritance from | ce: : Val ue in MATLAB

Classes implicitly inherit from a common base class, Val ue, which is mapped to | ce. Val ue. Val ue is a very simple base class with just a few methods:

MATLAB

cl assdef (Abstract) Value < natlab. m xi n. Copyabl e
nmet hods
function ice_preMarshal (obj)
end
function ice_post Unmarshal (obj)
end
function r = ice_getSlicedData(obj)

end
end

met hods( Abstract)
id = ice_id(obj)

end
met hods(Static)
function id = ice_staticld()
id="::lce::Object"’
end
end

end

Val ue derives from nat | ab. mi xi n. Copyabl e, which means subclasses are handle types and instances can be copied using the copy function.
The Val ue methods behave as follows:

® jce_preMarshal
The Ice run time invokes this method prior to marshaling the object's state, providing the opportunity for a subclass to validate its declared data
members.

® jce_post Unmar shal
The Ice run time invokes this method after unmarshaling an object's state. A subclass typically overrides this method when it needs to perform
additional initialization using the values of its declared data members.

® jce_id
This method returns the actual run-time type ID for a class instance. If you call i ce_i d through a reference to a base instance, the returned type
id is the actual (possibly more derived) type ID of the instance.

® jce_getSlicedData
This functions returns the Sl i cedDat a object if the value has been sliced during unmarshaling or an empty array otherwise.

Back to Top "

Class Data Members in MATLAB

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the generated
class contains a corresponding public property.

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value | ce. Unset to
indicate that the member is unset. A well-behaved program must test an optional data member before using its value:

MATLAB
obj = ...;
if obj.optional Menmber ~= |ce. Unset
fprintf('optional Menber = %s\n', ex.optional Menber);
el se

fprintf(' optional Menber is unset\n');
end

The | ce. Unset marker value has different semantics than an empty array. Since an empty array is a legal value for certain Slice types, the Ice run time
requires a separate marker value so that it can determine whether an optional value is set. An optional value set to an empty array is considered to be set.
If you need to distinguish between an unset value and a value set to an empty array, you can do so as follows:


https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

MATLAB

obj = ...;
if obj.optional Menmber == |ce. Unset
fprintf(' optional Menber is unset\n');
el sei f isenpty(obj.optional Menber)
fprintf(' optional Menber is enpty\n');
el se
fprintf('optional Menber = %\ n', ex.optional Menber);
end

If you wish to restrict access to a data member, you can modify its visibility using the pr ot ect ed metadata directive. The presence of this directive causes
the Slice compiler to generate the property with protected visibility. As a result, the property can be accessed only by the class itself or by one of its
subclasses. For example, the Ti meCf Day class shown below has the pr ot ect ed metadata directive applied to each of its data members:

Slice

cl ass Ti meCf Day

{

["protected"] short hour; /1 0 - 23

["protected"] short minute; // O - 59

["protected"] short second; // O - 59

["protected"] string tz; // e.g. GMI, PST, EDT...
}

The Slice compiler produces the following generated code for this definition:

MATLAB

cl assdef TinmeOfDay < |ce. Val ue
properties(Access=protected)
hour int16
mnute intl6
second int16
tz char
end

end

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the Ti neCf Day class as follows:

Slice

["protected"] class TineOf Day

{

short hour; // 0 - 23

short minute; // 0 - 59

short second; // 0 - 59

string tz; /'l e.g. GVI, PST, EDT...
}

Back to Top

Value Factories in MATLAB

Value factories allow you to create classes derived from the MATLAB classes generated by the Slice compiler, and tell the Ice run time to create instances
of these classes when unmarshaling. For example, with the following simple interface:


https://doc.zeroc.com/display/IceMatlab/Value+Factories

Slice

interface Tine

{
}

Ti meCf Day get ();

The default behavior of the Ice run time will create and return an instance of the generated Ti neOf Day class.

If you wish, you can create your own custom derived class, and tell Ice to create and return these instances instead. For example:

MATLAB

cl assdef Custonili meOf Day < Ti neOf Day
nmet hods
function format (obj)
% prints formatted data nenbers
end
end
end

You then create and register a value factory for your custom class with your Ice communicator:

MATLAB

function v = factory(type)
assert(strcnp(type, TimeOfDay.ice_staticld()));
v = Cust onili neCf Day() ;

end

comuni cator = ...;
conmmuni cat or . get Val ueFact or yManager (). add( @actory, TineOfDay.ice_staticld());

Back to Top

Class Constructors in MATLAB

If a class declares or inherits any data members, the generated constructor accepts one parameter for each data member so that you can construct and
initialize an instance in a single statement (instead of first having to construct the instance and then assign to its members). For a derived class, the
constructor accepts one argument for each base class member, plus one argument for each derived class member, in base-to-derived order.

You must either call the constructor with no arguments or with arguments for all of the parameters.

Calling the constructor with no arguments assigns a default value appropriate for each member's type:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration
struct Default-constructed value
Numeric Zero

bool fal se

sequence Empty array

dictionary Instance of the mapped type

cl ass Empty array

If you wish to ensure that data members of primitive and enumerated types are initialized to specific values, you can declare default values in your Slice
definition. The default constructor initializes each of these data members to its declared value instead.


https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Classes

Back to Top *

See Also

® Classes

® Class Inheritance
® Type IDs

® Value Factories

p= »

Previous Next


https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Class+Inheritance
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Asynchronous+Method+Invocation+%28AMI%29+in+MATLAB

	MATLAB Mapping for Classes

