
1.
2.

Customizing the MATLAB Mapping
You can customize the code that the Slice-to-MATLAB compiler produces by annotating your Slice definitions with . This page describes how metadata
metadata influences the generated MATLAB code.

On this page:

MATLAB Packages
Package Configuration Properties

MATLAB Packages
By default, the scope of a Slice definition determines the package of its mapped MATLAB construct. A Slice type defined in a module hierarchy is tmapped
o a type residing in the equivalent MATLAB package.

There are times when applications require greater control over the packaging of generated MATLAB classes. For instance, a company may have software
development guidelines that require all MATLAB classes to reside in a designated package. One way to satisfy this requirement is to modify the Slice
module hierarchy so that the generated code uses the required package by default. In the example below, we have enclosed the original definition of Work

 in the modules so that the compiler will create the class in the package:flow::Document com::acme com.acme

Slice

module com
{
 module acme
 {
 module Workflow
 {
 class Document
 {
 // ...
 }
 }
 }
}

There are two problems with this workaround:

It incorporates the requirements of an implementation language into the application's interface specification.
Developers using other languages, such as C++, are also affected.

The Slice-to-MATLAB compiler provides a better way to control the packages of generated code through the use of . The example above global metadata
can be converted as follows:

Slice

[["matlab:package:com.acme"]]
module Workflow
{
 class Document
 {
 // ...
 }
}

The global metadata directive instructs the compiler to generate all of the classes resulting from definitions in this Slice file matlab:package:com.acme
into the MATLAB package . The net effect is the same: the class for is generated in the package . However, com.acme Document com.acme.Workflow
we have addressed the two shortcomings of the first solution by reducing our impact on the interface specification: the Slice-to-MATLAB compiler
recognizes the package metadata directive and modifies its actions accordingly, whereas the compilers for other language mappings simply ignore it.

Back to Top ^

Package Configuration Properties

https://doc.zeroc.com/display/IceMatlab/Metadata
https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Modules
https://doc.zeroc.com/display/IceMatlab/Metadata

1.
2.

3.

4.

Using global metadata to alter the default package of generated classes has ramifications for the Ice run time when unmarshaling and exceptions concrete
. The Ice run time dynamically loads generated classes by translating their Slice type IDs into MATLAB class names. For example, the Ice run class types

time translates the Slice type ID into the class name .::Workflow::Document Workflow.Document

However, when the generated classes are placed in a user-specified package, the Ice run time can no longer rely on the direct translation of a Slice type
ID into a MATLAB class name, and therefore requires additional configuration so that it can successfully locate the generated classes. Two configuration
properties are supported:

Ice.Package.Module=package
Associates a top-level Slice module with the package in which it was generated.

Ice.Default.Package=package
Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete class is described below:

Translate the Slice type ID into a MATLAB class name and attempt to load the class.
If that fails, extract the top-level module from the type ID and check for an property with a matching module name. If found, Ice.Package
prepend the specified package to the class name and try to load the class again.
If that fails, check for the presence of . If found, prepend the specified package to the class name and try to load the Ice.Default.Package
class again.
If the class still cannot be loaded, the instance may be .sliced

Continuing our example from the previous section, we can define the following property:

Ice.Package.Workflow=com.acme

Alternatively, we could achieve the same result with this property:

Ice.Default.Package=com.acme

Back to Top ^

See Also

Metadata
Ice.Default.*
Miscellaneous Ice.* Properties

Only top-level module names are allowed; the semantics of global metadata prevent a nested module from being generated into a
different package than its enclosing module.

https://doc.zeroc.com/display/IceMatlab/User+Exceptions
https://doc.zeroc.com/display/IceMatlab/Simple+Classes
https://doc.zeroc.com/display/IceMatlab/Simple+Classes
https://doc.zeroc.com/display/IceMatlab/Class+Inheritance+Semantics
https://doc.zeroc.com/display/IceMatlab/Metadata
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties

	Customizing the MATLAB Mapping

