
Asynchronous Method Invocation (AMI) in MATLAB

Asynchronous Method Invocation (AMI) is the term used to describe the client-side support for the asynchronous programming model. AMI supports both
oneway and twoway requests, but unlike their synchronous counterparts, AMI requests never block the application. When a client issues an AMI request,
the Ice run time hands the message off to the local transport buffer or, if the buffer is currently full, queues the request for later delivery. The application
can then continue its activities and poll or wait for completion of the invocation, or receive a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether a client sent a request synchronously or asynchronously.

On this page:

Asynchronous API in MATLAB
Asynchronous Proxy Methods in MATLAB
Asynchronous Exception Semantics in MATLAB

Future Class in MATLAB
Asynchronous Oneway Invocations in MATLAB
Asynchronous Batch Requests in MATLAB

Asynchronous API in MATLAB
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Asynchronous Proxy Methods in MATLAB

In addition to the synchronous proxy method, generates the following asynchronous proxy method:slice2matlab

MATLAB

classdef EmployeesPrx < Ice.ObjectPrx
 methods
 function result = getName(obj, number, varargin) % Synchronous method
 ...
 end
 function future = getNameAsync(obj, number, varargin) % Asynchronous method
 ...
 end
 end
 ...
end

As you can see, the Slice operation generates a method that optionally accepts a .getName getNameAsync per-invocation context

The method sends (or queues) an invocation of . This method does not block the application. It returns an instance of getNameAsync getName Ice.
 that you can use in a number of ways, including blocking to obtain the result, querying its state, and canceling the invocation.Future

Here's an example that calls :getNameAsync

https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Classes
https://doc.zeroc.com/display/IceMatlab/slice2matlab+Command-Line+Options
https://doc.zeroc.com/display/IceMatlab/Request+Contexts

MATLAB

e = ...; % Get EmployeesPrx proxy
future = e.getNameAsync(99);

% Continue to do other things here...

name = f.fetchOutputs();

Because does not block, the application can do other things while the operation is in progress.getNameAsync

An asynchronous proxy method uses the same parameter mapping as for ; the only difference is that the result (if any) is obtained synchronous operations
from the future. For example, consider the following operation:

Slice

interface Example
{
 double op(int inp1, string inp2, out bool outp1, out long outp2);
}

The generated code looks like this:

MATLAB

classdef ExamplePrx < Ice.ObjectPrx
 methods
 function future = opAsync(obj, inp1, inp2, varargin)
 ...
 end
 ...
 end
 ...
end

Now let's call to demonstrate how to retrieve the results when the invocation completes:fetchOutputs

MATLAB

e = ...; % Get EmployeesPrx proxy
future = e.opAsync(5, 'demo');
...
[r, outp1, outp2] = future.fetchOutputs();

Back to Top ^

Asynchronous Exception Semantics in MATLAB

If an invocation raises an exception, the exception will be thrown when the application calls on the future. The exception is provided by the fetchOutputs
future, even if the actual error condition for the exception was encountered during the call to the method ("on the way out"). The advantage of opAsync
this behavior is that all exception handling is located with the code that handles the future (instead of being present twice, once where the methodopAsync
is called, and again where the future is handled).

There are two exceptions to this rule:

if you destroy the communicator and then make an asynchronous invocation, the method throws opAsync CommunicatorDestroyedException
 directly.
a call to an function can throw . An function throws this exception if you call an operation that has a return Async TwowayOnlyException Async
value or out-parameters on a oneway proxy.

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Operations

Future Class in MATLAB
The object that is returned by asynchronous proxy methods has an API that resembles MATLAB's class:Future parallel.Future

MATLAB

classdef Future < ...
 methods
 function ok = wait(obj, state, timeout)
 function varargout = fetchOutputs(obj)
 function cancel(obj)
 end
 properties(SetAccess=private) % Read only properties
 ID
 NumOutputArguments
 Operation
 Read
 State
 end
end

The members have the following semantics:

wait()
This method blocks until the invocation completes and returns if it completed successfully or if it failed.true false

wait(state)
This method blocks until the desired state is reached (see the description of the property below). For example, calling State future.wait

 is equivalent to calling . The method returns if the desired state was reached and no exception has ('finished') future.wait() true
occurred, or otherwise.false

wait(state, timeout)
This method blocks for a maximum of seconds until the desired state is reached, where is a double value. The method timeout timeout
returns if the desired state was reached and no exception has occurred, or otherwise.true false

fetchOutputs()
This method blocks until the invocation completes. If it completed successfully, returns the results (if any). If the invocation failed, fetchOutputs

 raises the exception. This method can only be invoked once.fetchOutputs

cancel()
If the invocation hasn't already completed either successfully or exceptionally, cancelling the future causes it to complete with an instance of Invo

. cationCanceledException Cancellation prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a
reply if the server sends one. Cancellation is a local operation and has no effect on the server.

ID
A numeric value that uniquely identifies the invocation.

NumOutputArguments
A numeric value denoting how many results the invocation will return upon successful completion.

Operation
The name of the operation that was invoked.

Read
A logical value indicating whether the results have already been obtained via .fetchOutputs

State
A string value indicating the current state of the invocation. For a twoway invocation, the property value transitions from to to running sent fini

. For a oneway, datagram, or batch invocation, the property value transitions from to .shed running finished

Back to Top ^

Asynchronous Oneway Invocations in MATLAB
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call an asynchronous proxy method on a oneway proxy for an operation that returns values or raises a user exception, the
proxy method throws .TwowayOnlyException

The future returned for a oneway invocation completes as soon as the request is successfully written to the client-side transport. The future completes
exceptionally if an error occurs before the request is successfully written.

https://www.mathworks.com/help/distcomp/parallel.future.html

Back to Top ^

Asynchronous Batch Requests in MATLAB
You can invoke operations via batch oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, void
and does not raise user exceptions. If you call an asynchronous proxy method on a batch oneway proxy for an operation that returns values or raises a
user exception, the proxy method throws .TwowayOnlyException

The future returned for a batch oneway invocation is always completed and indicates the successful queuing of the batch invocation. The future completes
exceptionally if an error occurs before the request is queued.

Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flushBa
 performs an immediate flush using the synchronous invocation model and may block the application until the entire message can be sent. tchRequests

Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

The proxy method flushes any batch requests queued by that proxy. In addition, similar methods are available on the ice_flushBatchRequestsAsync
communicator and the object. These methods flush batch requests sent via the same communicator and via the same connection, Connection
respectively.

Back to Top ^

See Also

Request Contexts
Batched Invocations

https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/MATLAB+Mapping+for+Classes
https://doc.zeroc.com/display/IceMatlab/slice2matlab+Command-Line+Options

	Asynchronous Method Invocation (AMI) in MATLAB

