
Initialization in Objective-C

Every Ice-based application needs to initialize the Ice run time, and this initialization returns an object.ICECommunicator

An ICE is a local Objective-C object that represents an instance of the Ice run time. Most Ice-based applications create and use a single Communicator IC
 object, although it is possible and occasionally desirable to have multiple objects in the same application.ECommunicator ICECommunicator

You initialize the Ice run time by calling on class . returns an instance of type createCommunicator ICEUtil createCommunicator id<ICECommuni
:cator>

Objective-C

id<ICECommunicator> communicator = [ICEUtil createCommunicator:&argc argv:argv];

createCommunicator accepts a to as well as . The class method scans the argument vector for any that are pointer argc argv command-line options
relevant to the Ice run time; any such options are removed from the argument vector so, when returns, the only options and createCommunicator
arguments remaining are those that concern your application. If anything goes wrong during initialization, throws an exception.createCommunicator

Before leaving your function, you must call . The method is responsible for finalizing the Ice run time. In main Communicator::destroy destroy
particular in a server, waits for any operation implementations that are still executing to complete. In addition, ensures that any destroy destroy
outstanding threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your funmain
ction to terminate without calling first.destroy

The general shape of our function is therefore:main

Objective-C

#import <objc/Ice.h>

int
main(int argc, char* argv[])
{
 int status = EXIT_SUCCESS;
 @autoreleasepool
 {
 id<ICECommunicator> communicator = nil;
 @try
 {
 communicator = [ICEUtil createCommunicator:&argc argv:argv];
 ...
 }
 @catch(NSException* ex)
 {
 NSLog(@"%@", ex);
 status = EXIT_FAILURE;
 }

 [communicator destroy];
 }
 return status;
}

Back to Top ^

See Also

Communicators
Communicator Initialization

https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Objective-C+Mapping
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Objective-C+Mapping

	Initialization in Objective-C

