Objective-C Mapping for Operations
&

Previous

On this page:

® Basic Objective-C Mapping for Operations
® Normal and idempotent Operations in Objective-C
® Passing Parameters in Objective-C
O In-Parameters in Objective-C
© Passing nil and NSNull in Objective-C
© Qut-Parameters in Objective-C
© Memory Management for Out-Parameters in Objective-C
O Receiving Return Values in Objective-C
© Chained Invocations in Objective-C
© nil Out-Parameters and Return Values in Objective-C
© Optional Parameters in Objective-C
® Exception Handling in Objective-C
O Exceptions and Out-Parameters in Objective-C
© Exceptions and Return Values in Objective-C

Basic Objective-C Mapping for Operations

As we saw in the mapping for interfaces, for each operation on an interface, the proxy protocol contains two corresponding methods with the same name
as the operation.

To invoke an operation, you call it via the proxy object. For example, here is part of the definitions for our file system:

Slice

["objc:prefix:FS"]
nodul e Fil esystem

{
interface Node
{
i denpotent string nane();
}
/1
}

The proxy protocol for the Node interface looks as follows:

Objective-C

@rotocol FSNodePrx <I CEQbj ect Prx>

- (NSwut abl eString *) nane;

- (NSMut abl eString *) nane: (I CECont ext *)context;
@nd,

The nane method returns a value of type NSMut abl eSt ri ng. Given a proxy to an object of type Node, the client can invoke the operation as follows:

Objective-C
i d<EXNodePr x> node = ...; /1 Initialize proxy
NSString *nanme = [node nane]; /] Get name via RPC

The nane method sends the operation invocation to the server, waits until the operation is complete, and then unmarshals the return value and returns it to
the caller.

It is safe to ignore the return value even when not using ARC as the returned value is autoreleased. For example, the following code contains no memory
leak:


https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Classes
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System

Objective-C

i d<EXNodePr x> node = ...; /1 Initialize proxy
[ node nane]; /1 Usel ess, but no |eak

If you ignore the return value, no memory leak occurs because the next time the enclosing autorelease pool is drained, the memory will be reclaimed.

Back to Top

Normal and i denpot ent Operations in Objective-C

You can add an i denpot ent qualifier to a Slice operation. As far as the corresponding proxy protocol methods are concerned, i denpot ent has no
effect. For example, consider the following interface:

Slice

interface Ops

{
string opl();
i denpotent string op2();
i denpotent void op3(string s);
}

The proxy protocol for this interface looks like this:

Objective-C

@r ot ocol EXOpsPrx <I CEObj ect Prx>

- (NSMut abl eString *) opil;

-(NSMut abl eString *) opl: (I CECont ext *)context;

- (NSMut abl eString *) op2;

-(NSwut abl eString *) op2: (I CECont ext *)context;

-(void) op3:(NSString *)s;

-(void) op3:(NSString *)s context: (|l CECont ext *)context;
@nd,

For brevity, we will not show the methods with the additional trailing cont ext parameter for the remainder of this discussion. Of course, the
compiler generates the additional methods regardless.

Because i denpot ent affects an aspect of call dispatch, not interface, it makes sense for the mapping to be unaffected by the i denpot ent keyword.

Back to Top

Passing Parameters in Objective-C

In-Parameters in Objective-C

The parameter passing rules for the Objective-C mapping are very simple: value type parameters are passed by value and non-value type parameters are
passed by pointer. Semantically, the two ways of passing parameters are identical: the Ice run time guarantees not to change the value of an in-parameter.

Here is an interface with operations that pass parameters of various types from client to server:


https://doc.zeroc.com/display/IceMatlab/Operations#Operations-IdempotentOperations
https://doc.zeroc.com/display/IceMatlab/Request+Contexts

Slice

struct Number AndString
{

int x;
string str;
}
sequence<string> StringSeq;

di ctionary<long, StringSeq> StringTable;

interface dientToServer

{
void opl(int i, float f, bool b, string s);
voi d op2(Nunber AndString ns, StringSeq ss, StringTable st);
voi d op3(dientToServer* proxy);

}

The Slice compiler generates the following code for this definition:

Objective-C

@nterface EXNunber AndString : NSObj ect <NSCopyi ng>
/1

@r operty(nonatom c, assign) |CEInt x;

@r operty(nonatomic, strong) NSString *str;

...

@nd

typedef NSArray EXStringSeq;
typedef NSMut abl eArray EXMut abl eStringSeq;

typedef NSDictionary EXStringTabl e;
typedef NSMut abl eDi cti onary EXMut abl eStri ngTabl e;

@rotocol EXCientToServerPrx <ICEObject Prx>

-(void) opl:(ICEINnt)i f:(ICEFloat)f b:(BOOL)b s:(NSString *)s;

-(void) op2: (EXNunber AndString *)ns ss: (EXStringSeq *)ss st:(NSDictionary *)st;
-(void) op3:(id<EXd ientToServer Prx>) proxy;

@nd;

Given a proxy to a O i ent ToSer ver interface, the client code can pass parameters as in the following example:



Objective-C
i d<EXd i ent ToServerPrx> p = ...; /1 Get proxy...

[p opl:42 f:3.14 b: YES s: @Hello world!"]; // Pass literals

ICEInt i = 42;
| CEFl oat f = 3.14;
BOOL b = YES;

NSString *s = @Hello world!";
[p opl:i f:f b:b s:s]; /1 Pass sinple vars

EXNunber AndString *ns = [ EXNunber AndString nunber AndString: 42 str: @ The Answer"];
EXMut abl eStringSeq *ss = [ ExMut abl eStringSeq array];

[ss addCbject: @Hello world!"];

EXStringTabl e *st = [ EXMut abl eStri ngTabl e dictionary];

[ss setObject:ss forKey: [ NSNumber nunberWthint:0]];

[p op2:ns ss:ss st:st]; /1 Pass conplex vars

[p op3:p]; /| Pass proxy

You can pass either literals or variables to the various operations. The Ice run time simply marshals the value of the parameters to the server and leaves
parameters otherwise untouched, so there are no memory-management issues to consider.

Note that the invocation of op3 is somewhat unusual: the caller passes the proxy it uses to invoke the operation to the operation as a parameter. While
unusual, this is legal (and no memory management issues arise from doing this.)

Back to Top

Passing ni | and NSNul | in Objective-C

The Slice language supports the concept of null ("points nowhere") for only two of its types: proxies and classes. For either type, ni | represents a null
proxy or class. For other Slice types, such as strings, the concept of a null string simply does not apply. (There is no such thing as a null string, only the
empty string.) However, strings, structures, sequences, and dictionaries are all passed by pointer, which raises the question of how the Objective-C
mapping deals with ni | values.

As a convenience feature, the Objective-C mapping permits passing of ni | as a parameter for the following types:

Proxies (ni | sends a null proxy.)

Classes (ni | sends a null class instance.)

Strings (ni | sends an empty string.)

Structures (ni | sends a default-initialized structure.)
Sequences (ni | sends an empty sequence.)
Dictionaries (ni | sends an empty dictionary.)

It is impossible to add ni | to an NSAr r ay or NSDi ct i onary, so the mapping follows the usual convention that an NSAr r ay element or NSDi cti onary v
alue that is conceptually ni | is represented by NSNul | . For example, to send a sequence of proxies, some of which are null proxies, you must insert NSNu
I'l values into the sequence.

As a convenience feature, if you have a sequence with elements of type string, structure, sequence, or dictionary, you can use NSNul | as the element
value. For elements that are NSNul | , the Ice run time marshals an empty string, default-initialized structure, empty sequence, or empty dictionary to the
receiver.

Similarly, for dictionaries with value type string, structure, sequence, or dictionary, you can use NSNul | as the value to send the corresponding empty
value (or default-initialized value, in the case of structures).

Back to Top

Out-Parameters in Objective-C

The Objective-C mapping passes out-parameters by pointer (for value types) and by pointer-to-pointer (for non-value types). Here is the Slice definition onc
e more, modified to pass all parameters in the out direction:



Slice

struct Number AndString
{

int x;
string str;
}
sequence<string> StringSeq;

di ctionary<long, StringSeq> StringTable;

interface ServerTod ient

{
void opl(out int i, out float f, out bool b, out string s);
voi d op2(out Nunber AndString ns, out StringSeq ss, out StringTable st);
voi d op3(out dientToServer* proxy);

}

The Slice compiler generates the following code for this definition:

Objective-C

@rotocol EXServerToC ientPrx <ICEObhjectPrx>

-(void) opl:(ICEInt *)i f:(ICEFloat *)f b:(BOOL *)b s:(NSMutabl eString **)s;

-(void) op2: (EXNunber AndString **)ns ss: (EXWMutabl eStringSeq **)ss st: (EXMutabl eStringTable **)st;
-(void) op3:(id<EXdientToServerPrx> *)proxy;

@nd

Note that, for types that come in immutable and mutable variants (strings, sequences, and dictionaries), the corresponding out-parameter uses the mutable
variant.

Given a proxy to a Ser ver Tod i ent interface, the client code can pass parameters as in the following example:

Objective-C
i d<EXServerToClientPrx> p = ...; // Get proxy...

ICEInt i;

| CEFl oat f;

BOCL b;

NSMut abl eString *s;

[p opl: & f:& b:& s:&s];
/1 i, f, b, and s contain updated val ues now

EXNunmber AndSt ri ng *ns;
EXStringSeq *ss;
EXStringTabl e *st;

[p op2: &ns ss: &ss st:&st];
/'l ns, ss, and st contain updated val ues now

[p op3:é&p];
/1 p has changed now

Again, there are no surprises in this code: the caller simply passes pointers to pointer variables to a method; once the operation completes, the values of
those variables will have been set by the server.

Back to Top

Memory Management for Out-Parameters in Objective-C



When the Ice run time returns an out-parameter to the caller, it does not make any assumptions about the previous value of that parameter (if any). In
other words, if you pass an initialized string as an out-parameter, the value you pass is simply discarded and the corresponding variable is assigned a new
instance. As an example, consider the following operation:

Slice

void getString(out string s);

You could call this as follows:
Objective-C

NSMut abl eString *s = @Hel |l 0";
[p getString: &s];
/1 s now points at the returned string.

When not using ARC, all out-parameters are autoreleased by the Ice run time before they are returned. With ARC, out parameters are implicitly qualified
with __aut or el easi ng so the returned objects are automatically autoreleased. This is convenient because it does just the right thing with respect to
memory management. For example, the following code does not leak memory:

Objective-C
NSMut abl eString *s = @Hel |l 0";

[p getString: &s];
[p getString:&s]; // No |eak here.

Beware however that when not using ARC, because the pointer value of out-parameters is simply assigned by the proxy method, you must be careful not
to pass a variable as an out-parameter if that variable was not released or autoreleased:

Objective-C
NSMut abl eString *s = [[NSMutabl eString alloc] initWthString: @Hello0"];

[p getString:&s]; // Bad news when not using ARC!

This code leaks the initial string because the proxy method assigns the passed pointer without calling r el ease on it first. (In practice, this is rarely a
problem because there is no need to initialize out-parameters and, if an out-parameter was initialized by being passed as an out-parameter to an operation
earlier, its value will have been autoreleased by the proxy method already.) When using ARC, this isn't an issue, the compiler will automatically release the
string when the out-parameter is returned.

It is worth having another look at the final call of the code example we saw earlier:
Objective-C

[p op3:&p];

Here, p is the proxy that is used to dispatch the call. That same variable p is also passed as an out-parameter to the call, meaning that the server will set
its value. In general, passing the same parameter as both an input and output parameter is safe (with the caveat we just discussed when not using ARC).

Back to Top

Receiving Return Values in Objective-C

The Objective-C mapping returns return values in much the same way as out-parameters: value types are returned by value, and non-value types are
returned by pointer. As an example, consider the following operations:



Slice

struct Number AndString

{
int x;
string str;
}
interface Ops
{
int getint();
string getString();
Nunber AndStri ng get Nunber AndStri ng();
}

The proxy protocol looks as follows:

Objective-C

@r ot ocol EXOpsPrx <I CEObj ect Prx>
-(ICEInt) getlnt;

- (NSMut abl eString *) getString;

- (EXNunber AndString *) get Nunber AndStri ng;
@nd

Note that, for types with mutable and immutable variants (strings, sequences, and dictionaries), the formal return type is the mutable variant. As for out-
parameters, when not using ARC, anything returned by pointer is autoreleased by the Ice run time. This means that the following code works fine and does
not contain memory management errors whether or not you use ARC:

Objective-C
EXNunmber AndString *ns = [ NSNurmber AndSt ri ng nunber AndStri ngj;
ns.x = [p getint];

ns.str = [p getString]; // Autoreleased by getString and retained by ns.str when not using ARC
[p getNumber AndString]; // No |eak here.

The return value of get St ri ng is autoreleased by the proxy method but, during the assignment to the property st r, the generated code calls r et ai n, so
the structure keeps the returned string alive in memory, as it should. Similarly, ignoring the return value from an invocation is safe because the returned
value is autoreleased and will be reclaimed when the enclosing autorelease pool is drained.

Back to Top

Chained Invocations in Objective-C
Consider the following simple interface containing two operations, one to set a value and one to get it:
Slice

interface Nanme

{
string get Name();
voi d set Name(string nane);

Suppose we have two proxies to interfaces of type Nane, pl and p2, and chain invocations as follows:

Objective-C

[p2 setNane:[pl getNane]]; // No |eak here.



This works exactly as intended: the value returned by p1 is transferred to p2. There are no memory-management or exception safety issues with this code.

Back to Top

ni | Out-Parameters and Return Values in Objective-C

If an out-parameter or return value is a proxy or class, and the operation returns a null proxy or class, the proxy method returns ni | . If a proxy or class is
returned as part of a sequence or dictionary, the corresponding entry is NSNul | .

For strings, structures, sequences, and dictionaries, the Ice run time never returns ni | or NSNul | (even if the server passed ni | or NSNul | as the
value). Instead, the unmarshaling code always instantiates an empty string, empty sequence, or empty dictionary, and it always initializes structure

members during unmarshaling, so structures that are returned from an operation invocation never contain a ni | instance variable (except for proxy and
class instance variables).

Back to Top

Optional Parameters in Objective-C

The Objective-C mapping uses the i d type for optional parameters. As a result, there's no compile time check for optional parameters. Instead, Ice
performs a run-time type check and if the optional parameter does not match the expected type an NSExcept i on with the NSI nval i dAr gunent Except i
on name is raised. Slice types that map to an Objective-C class use the same mapping as required parameters. Slice built-in basic types (except string)
are boxed into an NSNunber value. The | CENone singleton value can also be passed as the value of an optional parameter or return value.

Consider the following operation:
Slice

optional (1) int execute(optional (2) string aString, optional (3) int anlnt, out optional (4) float outFloat);

A client can invoke this operation as shown below:

Objective-C

idf;

idi;

i = [proxy execute: @--file log.txt" anlnt: @4 outFloat: &f]

i = [proxy execute: | CENone anlnt: @4 outFloat:& ] // aString is unset

if(i == |1 CENone)
{

NSLog(@ return value is not set");
}
el se
{

int v =[i intValue];

NSLog( @return value is set to %", v);
}

Passing ni | for an optional parameter is the same as passing ni | for a required parameter, the optional parameter is considered to be setto ni | . For
Slice built-in basic types (except string), the optional parameter is considered to be set to 0 or NOfor booleans.

A well-behaved program must not assume that an optional parameter always has a value. It should compare the value to | CENone to determine whether
the optional parameter is set.

Back to Top

Exception Handling in Objective-C

Any operation invocation may throw a run-time exception and, if the operation has an exception specification, may also throw user exceptions. Suppose
we have the following simple interface:


https://doc.zeroc.com/display/IceMatlab/Operations#Operations-optional
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Exceptions#ObjectiveCMappingforExceptions-runtime
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Exceptions#ObjectiveCMappingforExceptions-user

Slice

exception Tantrum

{
string reason;
}
interface Child
{
voi d askTod eanUp() throws Tantrum
}

Slice exceptions are thrown as Objective-C exceptions, so you can simply enclose one or more operation invocations in a t r y-cat ch block:

Objective-C
i d<EXChi I dPrx> child = ...; /Il Get proxy...
@ry
{
[child askTod eanUp] ; /1 Gveit atry...
}
@at ch( EXTantrum *t)
{

printf("The child says: %\n", t.reason_);

}

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected run-time errors,
will typically be dealt with by exception handlers higher in the hierarchy. For example:

Objective-C
voi d run()
{
i d<EXChi I dPrx> child = ...; /] Get proxy...
@ry
{
[child askTod eanUp]; /I Gve it atry...
}
@at ch( EXTantrum *t)
{
printf("The child says: %\n", t.reason);
[child scold]; /1 Recover fromerror...
}
[child praise]; /1 Gve positive feedback...
}
int
mai n(int argc, char* argv[])
{
int status = 1;
@ry
{
I
run();
Il
status = O;
}
@at ch(| CEException *e)
{
printf("Unexpected run-time error: %\n", [e ice_nane]);
}
11

return status;



This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the strategy we used for
our first simple application.)

Back to Top »

Exceptions and Out-Parameters in Objective-C

If an operation throws an exception, the Ice run time makes no guarantee for the value of out-parameters. Individual out-parameters may have the old
value, the new value, or a value that is indeterminate, such that parts of the out-parameter have been assigned and others have not. However, no matter
what their state, the values will be "safe" for memory-management purposes, that is, any out-parameters that were successfully unmarshaled are
autoreleased.

Back to Top *

Exceptions and Return Values in Objective-C

For return values, the Objective-C mapping provides the guarantee that a variable receiving the return value of an operation will not be overwritten if an
exception is thrown.

Back to Top

See Also

Operations

Hello World Application

Objective-C Mapping for Interfaces
Objective-C Mapping for Exceptions
Request Contexts

-

Previous


https://doc.zeroc.com/display/IceMatlab/Hello+World+Application
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Hello+World+Application
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Objective-C+Mapping+for+Classes

	Objective-C Mapping for Operations

