
PHP Mapping for Classes

On this page:

Basic PHP Mapping for Classes
Inheritance from Value in PHP
Class Data Members in PHP
Class Constructors in PHP
Class Operations in PHP
Value Factories in PHP

Basic PHP Mapping for Classes
A Slice maps to a PHP class with the same name. For each Slice data member, the generated class contains a member variable, just as for class
structures and exceptions. Consider the following class definition:

Slice

class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

The PHP mapping generates the following code for this definition:

PHP

class TimeOfDay extends \Ice\Value
{
 public function __construct($hour=0, $minute=0, $second=0)
 {
 $this->hour = $hour;
 $this->minute = $minute;
 $this->second = $second;
 }

 public function ice_id()
 {
 return '::TimeOfDay';
 }

 public static function ice_staticId()
 {
 return '::TimeOfDay';
 }

 public function __toString()
 {
 // ...
 }

 public $hour;
 public $minute;
 public $second;
}

There are a number of things to note about the generated code:

https://doc.zeroc.com/display/IceMatlab/PHP+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/slice2php+Command-Line+Options
https://doc.zeroc.com/display/IceMatlab/Classes

1.

2.
3.

The generated class inherits from . This reflects the semantics of Slice classes in that all classes implicitly inherit from TimeOfDay \Ice\Value \
, which is the ultimate ancestor of all classes. Note that is the same as \ . In other words, you Ice\Value \Ice\Value not Ice\ObjectPrx cann

 pass a class where a proxy is expected and vice versa.ot
The constructor initializes an instance variable for each Slice data member.
The class defines the method and class method .ice_id ice_staticId

There is quite a bit to discuss here, so we will look at each item in turn.

Back to Top ^

Inheritance from in PHPValue
Like interfaces, classes implicitly inherit from a common base class, . However, classes inherit from \ instead of \\Ice\Value Ice\Value Ice\ObjectPrx
, therefore you cannot pass a class where a proxy is expected (and vice versa) because the base types for classes and proxies are not compatible.

Value defines the following functions:

PHP

class Value
{
 public function ice_id()
 {
 return "::Ice::Object";
 }

 public function ice_preMarshal()
 {
 }

 public function ice_postMarshal()
 {
 }

 public function ice_getSlicedData()
 {
 ...
 }

 public static function ice_staticId()
 {
 return "::Ice::Object";
 }
}

These functions behave as follows:

ice_id
This method returns the actual run-time of the object. If you call through a reference to a base instance, the returned type ID is type ID ice_id
the actual (possibly more derived) type ID of the instance.

ice_preMarshal
If the object defines this method, the Ice run time invokes it just prior to marshaling the object's state, providing the opportunity for the object to
validate its declared data members.

ice_postUnmarshal
If the object defines this method, the Ice run time invokes it after unmarshaling the object's state. An object typically defines this method when it
needs to perform additional initialization using the values of its declared data members.
ice_getSlicedData
This functions returns the object if the value has been during un-marshaling or otherwise.SlicedData sliced null

ice_staticId
This method is generated in each class and returns the static of the class.type ID

Back to Top ^

Class Data Members in PHP

https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions
https://doc.zeroc.com/display/IceMaster/Type+IDs

By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the generated
class contains a corresponding member variable.

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value t\Ice\Unset
o indicate that the member is unset. A well-behaved program must compare an optional data member to before using the member's value:Unset

PHP

$v = ...;
if($v->optionalMember == \Ice\None)
{
 echo "optionalMember is unset\n";
}
else
{
 echo "optionalMember = " . $v->optionalMember . "\n";
}

The marker value has different semantics than . Since is a legal value for certain Slice types, the Ice run time requires a separate Unset null null
marker value so that it can determine whether an optional value is set. An optional value set to is considered to be set. If you need to distinguish null
between an unset value and a value set to , you can do so as follows:null

PHP

$v = ...;
if($v->optionalMember == \Ice\None)
{
 echo "optionalMember is unset\n";
}
else if($v->optionalMember == null)
{
 echo "optionalMember is null\n";
}
else
{
 echo "optionalMember = " . $v->optionalMember . "\n";
}

If you wish to restrict access to a data member, you can modify its visibility using the metadata directive. The presence of this directive causes protected
the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or by one of its
subclasses. For example, the class shown below has the metadata directive applied to each of its data members:TimeOfDay protected

Slice

class TimeOfDay
{
 ["protected"] short hour; // 0 - 23
 ["protected"] short minute; // 0 - 59
 ["protected"] short second; // 0 - 59
 string format(); // Return time as hh:mm:ss
}

The Slice compiler produces the following generated code for this definition:

PHP

abstract class TimeOfDay extends \Ice\Value
{
 public function __construct($hour=0, $minute=0, $second=0)
 {
 $this->hour = $hour;
 $this->minute = $minute;
 $this->second = $second;
 }

https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

 public function ice_id()
 {
 return '::TimeOfDay';
 }

 public static function ice_staticId()
 {
 return '::TimeOfDay';
 }

 public function __toString()
 {
 // ...
 }

 protected $hour;
 protected $minute;
 protected $second;
}

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

Back to Top ^

Class Constructors in PHP
Classes have a constructor that assigns to each data member a default value appropriate for its type:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration

struct Default-constructed value

Numeric Zero

bool False

sequence Null

dictionary Null

class/interface Null

You can also declare different for data members of primitive and enumerated types.default values

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data
members, in base-to-derived order.

Pass the marker value as the value of any that you wish to be unset.\Ice\None optional data members

Back to Top ^

Class Operations in PHP

https://doc.zeroc.com/display/IceMatlab/Simple+Classes
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

With the PHP mapping, operations in classes are not mapped at all into the corresponding PHP class. The generated PHP class is the same whether the
Slice class has operations or not.

Value Factories in PHP

Value factories allow you to create classes derived from the PHP class generated by the Slice compiler, and tell the Ice run time to create instances of
these classes when unmarshaling. For example, with the following simple interface:

Slice

class CustomTimeOfDay extends TimeOfDay
{
 public function format() { ... prints formatted data members ... }
}

You then create and register a value factory for your custom class with your Ice communicator:

PHP

class ValueFactory implements \Ice\ValueFactory
{
 public function create($type)
 {
 if($type == TimeOfDay::ice_staticId()))
 {
 return new CustomTimeOfDay;
 }
 assert(false);
 return null;
 }
}

$communicator->getValueFactoryManager()->add(new ValueFactory(), TimeOfDay::ice_staticId())

Back to Top ^

See Also

Classes
Type IDs
Optional Data Members
Value Factories

Deprecated Feature

Operations on classes are deprecated as of Ice 3.7. Skip this section unless you need to communicate with old applications that rely on this
feature.

While value factories were necessary in previous versions of Ice when using classes with operations (a now deprecated feature) with the PHP
mapping, value factories may be used for any kind of class and are not deprecated.

https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/PHP+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/slice2php+Command-Line+Options

	PHP Mapping for Classes

