
Application Notes for PHP

On this page:

PHP Request Semantics
Using Communicators in PHP
Managing Property Sets in PHP

Default Property Set in PHP
Profiles in PHP
Using Property Sets in PHP
Security Considerations for Property Sets in PHP

Timeouts in PHP
Registered Communicators in PHP

Limitations of Registered Communicators in PHP
Using Registered Communicators in PHP
Security Considerations for Registered Communicators in PHP
Lifetime of Object Factories in PHP

PHP Request Semantics
In PHP terminology, a is the execution of a PHP script on behalf of a Web client. Each request essentially runs in its own instance of the PHP request
interpreter, isolated from any other requests that may be executing concurrently. Upon the completion of a request, the interpreter reclaims memory and
other resources that were acquired during the request, including objects created by the Ice extension.

Using Communicators in PHP
A communicator represents an instance of the Ice run time. A PHP script that needs to invoke an operation on a remote Ice object must initialize a
communicator, obtain and narrow a proxy, and make the invocation. For example, here is a minimal (but complete) Ice script:

https://doc.zeroc.com/display/IceMatlab/slice2php+Command-Line+Options
https://doc.zeroc.com/display/IceMatlab/Using+Slice+Checksums+in+PHP

1.
2.

PHP

<?php
require_once 'Ice.php';
require_once 'Hello.php';

$communicator = null;

try
{
 $data = new Ice\InitializationData;
 $data->properties = Ice\createProperties();
 $data->properties->load("props.cfg");
 $communicator = Ice\initialize($data);
 $proxy = $communicator->stringToProxy("...");
 $hello = Demo\HelloPrxHelper::checkedCast($proxy);
 $hello->sayHello();
}
catch(Ice\LocalException $ex)
{
 // Deal with exception...
}

if($communicator)
{
 try
 {
 $communicator->destroy();
 }
 catch(Ice\LocalException $ex)
 {
 // Ignore.
 }
}
?>

By default, the Ice extension automatically destroys any communicator that was created during a request. This means a script can usually omit the call to d
 unless there is an application-specific reason to destroy the communicator explicitly. Consequently, we can simplify our script to the following:estroy

PHP

<?php
require 'Ice.php';
require 'Hello.php';

try
{
 $data = new Ice\InitializationData;
 $data->properties = Ice\createProperties();
 $data->properties->load("props.cfg");
 $communicator = Ice\initialize($data);
 $proxy = $communicator->stringToProxy("...");
 $hello = Demo\HelloPrxHelper::checkedCast($proxy);
 $hello->sayHello();
}
catch(Ice\LocalException $ex)
{
 // Deal with exception...
}
?>

Now we allow the Ice extension to destroy our communicator automatically. (The extension traps and ignores any exception raised by .)destroy

Although the automatic destruction of communicators is convenient, it is important to consider the performance characteristics of this script. Specifically,
each execution of the script involves the following activities:

Create an Ice property set

2.
3.
4.
5.
6.
7.

Load and parse a property file
Initialize a communicator with the given configuration properties
Obtain a proxy for the remote Ice object
Establish a socket connection to the server
Send a request message and wait for the reply
Destroy the communicator, which closes the socket connection

Of primary concern are the activities that involve system calls, such as opening and reading files, creating and using sockets, and so on. The overhead
incurred by these calls may not matter if the script is only executed infrequently, but for an application with high request rates it is necessary to minimize
this overhead:

A eliminates the need to parse a property file in each request.pre-configured property set
Timeouts prevent a script from blocking indefinitely in case Ice encounters delays while performing socket operations.
Registering a communicator avoids the need to create and destroy a communicator in every request.
Be aware of the number of "round trips" (request-reply pairs) your script makes. For example, the script above uses to verify that checkedCast
the remote Ice object supports the desired Slice interface. However, calling causes the Ice run time to send a request to the server checkedCast
and await its reply, therefore this script is actually making two remote invocations. It is unnecessary to perform a checked cast if it is safe for the
client to assume that the Ice object supports the correct interface, in which case using an instead avoids the extra round trip.uncheckedCast

Back to Top ^

Managing Property Sets in PHP
A PHP application can manually construct a for configuring its communicator. The Ice extension also provides a PHP-specific property set API property set
that helps to minimize the overhead associated with initializing a communicator, allowing you to configure a default property set along with an unlimited
number of named property sets (or). You can populate a property set using a configuration file, command-line options, or both. Property sets are profiles
initialized using the normal Ice semantics: command-line options override any settings from a configuration file.

The Ice extension creates these property sets during web server startup, which means any subsequent changes you might make to the configuration have
no effect until the web server is restarted. Also keep in mind that specifying a relative path name for a configuration file usually means the path name is
evaluated relative to the web server's working directory.

Back to Top ^

Default Property Set in PHP

The INI directives and specify the configuration file and the command-line options for the default property set, respectively. ice.config ice.options
These directives must appear in PHP's configuration file, which is usually named :php.ini

; Snippet from php.ini on Linux
extension=IcePHP.so
ice.config=/opt/MyApp/default.cfg
ice.options="--Ice.Override.Timeout=2000"

Back to Top ^

Profiles in PHP

Profiles are useful when several unrelated applications execute in the same web server, or when a script needs to choose among multiple configurations.
To configure your profiles, add an directive to PHP's configuration file. The value of this directive is a file containing profile definitions:ice.profiles

; Snippet from php.ini on Linux
ice.profiles=/opt/MyApp/profiles

The profile definition file uses INI syntax:

[Production]
config=/opt/MyApp/prod.cfg
options="..."

[Debug]
config=/opt/MyApp/debug.cfg
options="--Ice.Trace.Network=3 ..."

The name of each profile is enclosed in square brackets. The configuration file and command-line options for each profile are defined using the config
and entries, respectively.options

https://doc.zeroc.com/display/IceMatlab/Properties+and+Configuration

Back to Top ^

Using Property Sets in PHP

The function allows a script to obtain a copy of a property set. When called without an argument, or with an empty string, the Ice\getProperties
function returns the default property set. Otherwise, the function expects the name of a configured profile and returns the property set associated with that
profile. The return value is an instance of , or if no matching profile was found.Ice\Properties null

Note that the Ice extension always creates the default property set, which is empty if the and directives are not defined. Also ice.config ice.options
note that changes a script might make to a property set returned by this function have no effect on other requests because the script is modifying a of copy
the original property set.

Now we can modify our script to use and avoid the need to load a configuration file in each request:Ice\getProperties

PHP

<?php
require_once 'Ice.php';
require_once 'Hello.php';

try
{
 $data = new Ice\InitializationData;
 $data->properties = Ice\getProperties();
 $communicator = Ice\initialize($data);
 $proxy = $communicator->stringToProxy("...");
 $hello = Demo\HelloPrxHelper::checkedCast($proxy);
 $hello->sayHello();
}
catch(Ice\LocalException $ex)
{
 // Deal with exception...
}
?>

Back to Top ^

Security Considerations for Property Sets in PHP

Ice configuration properties may contain sensitive information such as the path name of the private key for an X.509 certificate. If multiple untrusted PHP
applications run in the same web server, avoid the use of the default property set and choose sufficiently unique names for your named profiles. The Ice
extension does not provide a means for enumerating the names of the configured profiles, therefore a malicious script would have to guess the name of a
profile in order to examine its configuration properties.

To prevent a script from using the value of to open the profile definition file directly, enable the directive to cause ice.profiles ice.hide_profiles
the Ice extension to replace the setting after it has processed the file. The directive is enabled by default.ice.profiles ice.hide_profiles

Back to Top ^

Timeouts in PHP
All twoway remote invocations made by a PHP script have synchronous semantics: the script does not regain control until Ice receives a reply from the
server. As a result, we recommend configuring a suitable value for all of your proxies as a defensive measure against network delays.timeout

Back to Top ^

Registered Communicators in PHP
You can register a communicator to prevent it from being destroyed at the completion of a script. For example, a session-based PHP application can
create a communicator for each new session and register it for reuse in subsequent requests of the same session. Reusing a communicator in this way
avoids the overhead associated with creating and destroying a communicator in each request. Furthermore, it allows socket connections established by
the Ice run time to remain open and available for use in another request.

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts

Limitations of Registered Communicators in PHP

A communicator object is local to the process that created it, which in the case of PHP is usually a web server process. The usefulness of a registered
communicator is therefore limited to situations in which an application can ensure that subsequent page requests are handled by the same web server
process as the one that originally created the registered communicator. For example, registered communicators would not be appropriate in a typical CGI
configuration because the CGI process terminates at the end of each request. A simple (but often impractical) solution is to configure your web server to
use a single persistent process. The topic of configuring a web server to take advantage of registered communicators is outside the scope of this manual.

Back to Top ^

Using Registered Communicators in PHP

The API for registered communicators consists of three functions:

Ice\register($communicator, $name, $expires=0)
Registers a communicator with the given name. On success, the function returns true. If another communicator is already registered with the
same name, the function returns false. The argument specifies a timeout value in minutes; if is greater than zero, the Ice expires expires
extension automatically destroys the communicator if it has not been retrieved (via) for the specified number of minutes. The default Ice\find
value (zero) means the communicator never expires, in which case the Ice extension only destroys the communicator when the current process
terminates.
It is legal to register a communicator with more than one name. In that case, the most recent value of expires takes precedence.

Ice\unregister($name)
Removes the registration for a communicator with the given name. Returns true if a match was found or false otherwise. Calling Ice\unregister
does not cause the communicator to be destroyed; rather, the communicator is destroyed as soon as all pending requests that are currently using
the communicator have completed. Destroying a registered communicator explicitly also removes its registration.

Ice\find($name)
Retrieves the communicator associated with the given name. Returns if no match is found.null

An application typically uses registered communicators as follows:

PHP

<?php
require_once 'Ice.php';

$communicator = Ice\find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
 $communicator = Ice\initialize(...);
 Ice\register($communicator, 'MyCommunicator', $expires);
}

...
?>

Note that communicators consume resources such as threads, sockets, and memory, therefore an application should be designed to minimize the number
of communicators it registers. Using a suitable expiration timeout prevents registered communicators from accumulating indefinitely.

A simple application that demonstrates the use of registered communicators can be found in the subdirectory of the PHP sample Glacier2/hello
programs.

Back to Top ^

Security Considerations for Registered Communicators in PHP

There are risks associated with allowing untrusted applications to gain access to a registered communicator. For example, if a malicious script obtains a
registered communicator that is configured with SSL credentials, the script could potentially make secure invocations as if it were the trusted script.

Registering a communicator with a sufficiently unique name reduces the chance that a malicious script could guess the communicator's name. For
applications that make use of PHP's session facility, the session ID is a reasonable choice for a communicator name. The sample application in Glacier2

 demonstrates this solution./hello

Back to Top ^

Lifetime of Object Factories in PHP

PHP reclaims all memory at the end of each request, which means any object factories that a script might have installed in a registered communicator are
destroyed when the request completes even if the communicator is not destroyed. As a result, a script must install its object factories in a registered
communicator for request, as shown in the example below:every

PHP

<?php
require 'Ice.php';

$communicator = Ice\find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
 $communicator = Ice_initialize(...);
 Ice\register($communicator, 'MyCommunicator', $expires);
}

$communicator->addObjectFactory(new MyFactory, MyClass::ice_staticId());
...
?>

The Ice extension invokes the method of each factory prior to the completion of a request.destroy

Back to Top ^

See Also

Properties and Configuration
Connection Timeouts

https://doc.zeroc.com/display/IceMatlab/Properties+and+Configuration
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/slice2php+Command-Line+Options
https://doc.zeroc.com/display/IceMatlab/Using+Slice+Checksums+in+PHP

	Application Notes for PHP

