
Initialization in Python

Every Ice-based application needs to initialize the Ice run time, and this initialization returns an object.Ice.Communicator

A is a local Python object that represents an instance of the Ice run time. Most Ice-based applications create and use a single Communicator Communica
 object, although it is possible and occasionally desirable to have multiple objects in the same application.tor Communicator

You initialize the Ice run time by calling , for example:Ice.initialize

Python

import sys, Ice

communicator = Ice.initialize(sys.argv)

Ice.initialize accepts the argument list that is passed to the program by the operating system. The function scans the argument list for any command
 that are relevant to the Ice run time; any such options are removed from the argument list so, when returns, the only -line options Ice.initialize

options and arguments remaining are those that concern your application. If anything goes wrong during initialization, throws an exception.initialize

Before leaving your program, you must call . The method is responsible for finalizing the Ice run time. In particular, in Communicator.destroy destroy
an Ice server, waits for any operation implementations that are still executing to complete. In addition, ensures that any outstanding destroy destroy
threads are joined with and reclaims a number of operating system resources, such as file descriptors and memory. Never allow your program to terminate
without calling first.destroy

The general shape of our application becomes:

Python

import sys, traceback, Ice

status = 0
communicator = None
try:
 # correct but suboptimal, see below
 communicator = Ice.initialize(sys.argv)
 # ...
except:
 traceback.print_exc()
 status = 1

if communicator:
 # correct but suboptimal, see below
 communicator.destroy()

sys.exit(status)

This code is a little bit clunky, as we need to make sure the communicator gets destroyed in all paths, including when an exception is thrown.

Fortunately, implements the : this allows us to call in a statement, which destroys Communicator Python context manager protocol initialize with
the communicator automatically, without an explicit call to the method.destroy

The preferred way to initialize the Ice run time in Python is therefore:

Python

import sys, Ice

with Ice.initialize(sys.argv) as communicator:
 # ...

communicator is destroyed automatically at the end of the 'with' statement

https://doc.zeroc.com/display/IceMatlab/Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://doc.zeroc.com/display/IceMatlab/Setting+Properties+on+the+Command+Line
https://www.python.org/dev/peps/pep-0343

Back to Top ^

See Also

Communicators
Communicator Initialization
Application Helper Class

https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Client-Side+Slice-to-Python+Mapping

	Initialization in Python

