
Python Mapping for Interfaces

The mapping of Slice revolves around the idea that, to invoke a remote operation, you call a member function on a local class instance that is a interfaces p
 for the remote object. This makes the mapping easy and intuitive to use because making a remote procedure call is no different from making a local roxy

procedure call (apart from error semantics).

On this page:

Proxy Classes in Python
Interface Inheritance in Python
Ice.ObjectPrx Class in Python
Casting Proxies in Python
Using Proxy Methods in Python
Object Identity and Proxy Comparison in Python

Proxy Classes in Python
On the client side, a Slice interface maps to a Python class with methods that correspond to the operations on that interface. Consider the following simple
interface:

Slice

interface Simple
{
 void op();
}

The Python mapping generates the following definition for use by the client:

Python

class SimplePrx(Ice.ObjectPrx):
 def op(self, context=None):
 # ...

 def ice_staticId():
 return '...'
 ice_staticId = staticmethod(ice_staticId)

 # ...

In the client's address space, an instance of is the local ambassador for a remote instance of the interface in a server and is known SimplePrx Simple
as a . All the details about the server-side object, such as its address, what protocol to use, and its object identity are encapsulated in that proxy instance
instance.

Note that inherits from . This reflects the fact that all Ice interfaces implicitly inherit from .SimplePrx Ice.ObjectPrx Ice::Object

For each operation in the interface, the proxy class has a method of the same name. In the preceding example, we find that the operation has been op
mapped to the method . Note that accepts an optional trailing parameter representing the operation context. This parameter is a Python op op _ctx
dictionary for use by the Ice run time to store information about how to deliver a request. You normally do not need to use it. (We examine the context
parameter in detail in . The parameter is also used by .)Request Contexts IceStorm

Proxy instances are always created on behalf of the client by the Ice run time, so client code never has any need to instantiate a proxy directly.

A value of denotes the null proxy. The null proxy is a dedicated value that indicates that a proxy points "nowhere" (denotes no object).None

Another method defined by every proxy class is , which returns the string corresponding to the interface. As an example, for the ice_staticId type ID
Slice interface in module , the string returned by is .Simple M ice_staticId "::M::Simple"

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/IceStorm
http://doc.zeroc.com/display/Ice36/Type+IDs

Interface Inheritance in Python
Inheritance relationships among Slice interfaces are maintained in the generated Python classes. For example:

Slice

interface A { ... }
interface B { ... }
interface C extends A, B { ... }

The generated code for reflects the inheritance hierarchy:CPrx

Python

class CPrx(APrx, BPrx):
 ...

Given a proxy for , a client can invoke any operation defined for interface , as well as any operation inherited from 's base interfaces.C C C

Back to Top ^

Ice.ObjectPrx Class in Python
All Ice objects have as the ultimate ancestor type, so all proxies inherit from . provides a number of methods:Object Ice.ObjectPrx ObjectPrx

Python

class ObjectPrx(object):
 def equals(self, other):
 def ice_getIdentity(self):
 def ice_isA(self, id):
 def ice_ids(self):
 def ice_id(self):
 def ice_ping(self):
 # ...

The methods behave as follows:

equals
This method compares two proxies for equality. Note that all aspects of proxies are compared by this method, such as the communication
endpoints for the proxy. This means that, in general, if two proxies compare unequal, that does imply that they denote different objects. For not
example, if two proxies denote the same Ice object via different transport endpoints, returns even though the proxies denote the equals false
same object.

ice_getIdentity
This method returns the identity of the object denoted by the proxy. The identity of an Ice object has the following Slice type:

Slice

module Ice
{
 struct Identity
 {
 string name;
 string category;
 }
}

To see whether two proxies denote the same object, first obtain the identity for each object and then compare the identities:

Python

proxy1 = ...
proxy2 = ...
id1 = proxy1.ice_getIdentity()
id2 = proxy2.ice_getIdentity()

if id1 == id2:
 # proxy1 and proxy2 denote the same object
else:
 # proxy1 and proxy2 denote different objects

ice_isA
The method determines whether the object denoted by the proxy supports a specific interface. The argument to is a . ice_isA ice_isA type ID
For example, to see whether a proxy of type denotes a object, we can write:ObjectPrx Printer

Python

proxy = ...
if proxy != None and proxy.ice_isA("::Printer"):
 # proxy denotes a Printer object
else:
 # proxy denotes some other type of object

Note that we are testing whether the proxy is before attempting to invoke the method. This avoids getting a run-time error if the None ice_isA
proxy is .None

ice_ids
The method returns an array of strings representing all of the that the object denoted by the proxy supports.ice_ids type IDs

ice_id
The method returns the of the object denoted by the proxy. Note that the type returned is the type of the actual object, which may ice_id type ID
be more derived than the static type of the proxy. For example, if we have a proxy of type , with a static type ID of , the return BasePrx ::Base
value of might be , or it might something more derived, such as .ice_id ::Base ::Derived

ice_ping
The method provides a basic reachability test for the object. If the object can physically be contacted (that is, the object exists and its ice_ping
server is running and reachable), the call completes normally; otherwise, it throws an exception that indicates why the object could not be
reached, such as or .ObjectNotExistException ConnectTimeoutException

The , , , and methods are remote operations and therefore support an optional trailing parameter representing a ice_isA ice_ids ice_id ice_ping requ
. Also note that there are in , not shown here. These methods provide different ways to dispatch a call and also est context other methods ObjectPrx

provide access to an object's .facets

Back to Top ^

Casting Proxies in Python
The Python mapping for a proxy also generates two static methods:

Python

class SimplePrx(Ice.ObjectPrx):
 # ...

 def checkedCast(proxy, facet=''):
 # ...
 checkedCast = staticmethod(checkedCast)

 def uncheckedCast(proxy, facet=''):
 # ...
 uncheckedCast = staticmethod(uncheckedCast)

https://doc.zeroc.com/display/IceMatlab/Operations+on+Object#OperationsonObject-ice_isA
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object#OperationsonObject-ice_ids
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object#OperationsonObject-ice_id
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object#OperationsonObject-ice_ping
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Versioning

The method names and are reserved for use in proxies. If a Slice interface defines an operation with either of those checkedCast uncheckedCast
names, the mapping escapes the name in the generated proxy by prepending an underscore. For example, an interface that defines an operation named c

 is mapped to a proxy with a method named .heckedCast _checkedCast

For , if the passed proxy is for an object of type , or a proxy for an object with a type derived from , the cast returns a checkedCast Simple Simple
reference to a proxy of type ; otherwise, if the passed proxy denotes an object of a different type (or if the passed proxy is), the cast SimplePrx None
returns .None

Given a proxy of any type, you can use a to determine whether the corresponding object supports a given type, for example:checkedCast

Python

obj = ... # Get a proxy from somewhere...

simple = SimplePrx.checkedCast(obj)
if simple != None:
 # Object supports the Simple interface...
else:
 # Object is not of type Simple...

Note that a contacts the server. This is necessary because only the implementation of an object in the server has definite knowledge of the checkedCast
type of an object. As a result, a may throw a or an .checkedCast ConnectTimeoutException ObjectNotExistException

In contrast, an does not contact the server and unconditionally returns a proxy of the requested type. However, if you do use an uncheckedCast unchec
, you must be certain that the proxy really does support the type you are casting to; otherwise, if you get it wrong, you will most likely get a run-kedCast

time exception when you invoke an operation on the proxy. The most likely error for such a type mismatch is . However, OperationNotExistException
other exceptions, such as a marshaling exception are possible as well. And, if the object happens to have an operation with the correct name, but different
parameter types, no exception may be reported at all and you simply end up sending the invocation to an object of the wrong type; that object may do
rather nonsensical things. To illustrate this, consider the following two interfaces:

Slice

interface Process
{
 void launch(int stackSize, int dataSize);
}

// ...

interface Rocket
{
 void launch(float xCoord, float yCoord);
}

Suppose you expect to receive a proxy for a object and use an to down-cast the proxy:Process uncheckedCast

Python

obj = ... # Get proxy...
process = ProcessPrx.uncheckedCast(obj) # No worries...
process.launch(40, 60) # Oops...

If the proxy you received actually denotes a object, the error will go undetected by the Ice run time: because and have the same size Rocket int float
and because the Ice protocol does not tag data with its type on the wire, the implementation of will simply misinterpret the passed Rocket::launch
integers as floating-point numbers.

In fairness, this example is somewhat contrived. For such a mistake to go unnoticed at run time, both objects must have an operation with the same name
and, in addition, the run-time arguments passed to the operation must have a total marshaled size that matches the number of bytes that are expected by
the unmarshaling code on the server side. In practice, this is extremely rare and an incorrect typically results in a run-time exception.uncheckedCast

Back to Top ^

Using Proxy Methods in Python

The base proxy class supports a variety of . Since proxies are immutable, each of these "factory methods" ObjectPrx methods for customizing a proxy
returns a copy of the original proxy that contains the desired modification. For example, you can obtain a proxy configured with a ten second invocation
timeout as shown below:

Python

proxy = communicator.stringToProxy(...)
proxy = proxy.ice_invocationTimeout(10000)

A factory method returns a new proxy object if the requested modification differs from the current proxy, otherwise it returns the current proxy. With few
exceptions, factory methods return a proxy of the same type as the current proxy, therefore it is generally not necessary to repeat a down-cast after using
a factory method. The example below demonstrates these semantics:

Python

base = communicator.stringToProxy(...)
hello = Demo.HelloPrx.checkedCast(base)
hello = hello.ice_invocationTimeout(10000) # Type is preserved
hello.sayHello()

The only exceptions are the factory methods and . Calls to either of these methods may produce a proxy for an object of an ice_facet ice_identity
unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Back to Top ^

Object Identity and Proxy Comparison in Python
Proxy objects support comparison using the built-in relational operators as well as the function. Note that proxy comparison uses of the information cmp all
in a proxy for the comparison. This means that not only the object identity must match for a comparison to succeed, but other details inside the proxy, such
as the protocol and endpoint information, must be the same. In other words, comparison tests for identity, object identity. A common mistake is to proxy not
write code along the following lines:

Python

p1 = ... # Get a proxy...
p2 = ... # Get another proxy...

if p1 != p2:
 # p1 and p2 denote different objects # WRONG!
else:
 # p1 and p2 denote the same object # Correct

Even though and differ, they may denote the same Ice object. This can happen because, for example, both and embed the same object p1 p2 p1 p2
identity, but each uses a different protocol to contact the target object. Similarly, the protocols may be the same, but denote different endpoints (because a
single Ice object can be contacted via several different transport endpoints). In other words, if two proxies compare equal, we know that the two proxies
denote the same object (because they are identical in all respects); however, if two proxies compare unequal, we know absolutely nothing: the proxies
may or may not denote the same object.

To compare the object identities of two proxies, you can use helper functions in the module:Ice

Python

def proxyIdentityCompare(lhs, rhs)
def proxyIdentityAndFacetCompare(lhs, rhs)

proxyIdentityCompare allows you to correctly compare proxies for identity:

https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

Python

p1 = ... # Get a proxy...
p2 = ... # Get another proxy...

if Ice.proxyIdentityCompare(p1, p2) != 0:
 # p1 and p2 denote different objects # Correct
else:
 # p1 and p2 denote the same object # Correct

The function returns 0 if the identities are equal, if is less than , and if is greater than . (The comparison uses as the major sort key 1 p1 p2 1 p1 p2 name
and as the minor sort key.)category

The function behaves similarly, but compares both the identity and the .proxyIdentityAndFacetCompare facet name

Back to Top ^

See Also

Interfaces, Operations, and Exceptions
Proxies for Ice Objects
Python Mapping for Operations
Operations on Object
Proxy Methods
Versioning
IceStorm

https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Interfaces%2C+Operations%2C+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Proxies+for+Ice+Objects
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/IceStorm
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations

	Python Mapping for Interfaces

