
AMI in Python with AsyncResult

On this page:

Basic Asynchronous API in Python
Asynchronous Proxy Methods in Python
Asynchronous Exception Semantics in Python

AsyncResult Class in Python
Polling for Completion in Python
Completion Callbacks in Python
Sharing State Between begin_ and end_ Methods in Python
Asynchronous Oneway Invocations in Python
Flow Control in Python
Asynchronous Batch Requests in Python
Concurrency Semantics for AMI in Python

Basic Asynchronous API in Python
Consider the following simple Slice definition:

Slice

module Demo
{
 interface Employees
 {
 string getName(int number);
 }
}

Back to Top ^

Asynchronous Proxy Methods in Python

Besides the synchronous proxy methods, the Python mapping generates the following asynchronous proxy methods:

Python

def begin_getName(self, number, _response=None, _ex=None, _sent=None, _ctx=None)
def end_getName(self, result)

As you can see, the single operation results in and methods. The optionally accepts a getName begin_getName end_getName begin_ method per-
 and .invocation context callbacks

The method sends (or queues) an invocation of . This method does not block the calling thread.begin_getName getName
The method collects the result of the asynchronous invocation. If, at the time the calling thread calls , the result is end_getName end_getName
not yet available, the calling thread blocks until the invocation completes. Otherwise, if the invocation completed some time before the call to end_

, the method returns immediately with the result.getName

A client could call these methods as follows:

The AMI mapping using the AsyncResult API is deprecated and provided only for backward compatibility. New applications should use the Futur
.es API

https://doc.zeroc.com/display/IceMatlab/AMI+in+Python+with+Futures
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Python
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/AMI+in+Python+with+Futures
https://doc.zeroc.com/display/IceMatlab/AMI+in+Python+with+Futures

Python

e = EmployeePrx.checkedCast(...)
r = e.begin_getName(99)

Continue to do other things here...

name = e.end_getName(r)

Because does not block, the calling thread can do other things while the operation is in progress.begin_getName

Note that returns a value of type . This value contains the state that the Ice run time requires to keep track of the begin_getName AsyncResult
asynchronous invocation. You must pass the that is returned by the method to the corresponding method.AsyncResult begin_ end_

The method has one parameter for each in-parameter of the corresponding Slice operation. The method accepts the object begin_ end_ AsyncResult
as its only argument and returns the out-parameters using the as for regular synchronous invocations. For example, consider the same semantics
following operation:

Slice

double op(int inp1, string inp2, out bool outp1, out long outp2);

The and methods have the following signature:begin_op end_op

Python

def begin_op(self, inp1, inp2, ...)
def end_op(self, result)

The call to returns the following tuple:end_op

Python

doubleValue, outp1, outp2 = p.end_op(result)

Back to Top ^

Asynchronous Exception Semantics in Python

If an invocation raises an exception, the exception is thrown by the method, even if the actual error condition for the exception was encountered end_
during the method ("on the way out"). The advantage of this behavior is that all exception handling is located with the code that calls the begin_ end_
method (instead of being present twice, once where the method is called, and again where the method is called).begin_ end_

There is one exception to the above rule: if you destroy the communicator and then make an asynchronous invocation, the method throws begin_ Commun
. This is necessary because, once the run time is finalized, it can no longer throw an exception from the method.icatorDestroyedException end_

The only other exception that is thrown by the and methods is . This exception indicates that you have used the API begin_ end_ RuntimeError
incorrectly. For example, the method throws this exception if you call an operation that has a return value or out-parameters on a oneway proxy. begin_
Similarly, the method throws this exception if you use a different proxy to call the method than the proxy you used to call the method, end_ end_ begin_
or if the you pass to the method was obtained by calling the method for a different operation.AsyncResult end_ begin_

Back to Top ^

AsyncResult Class in Python
The that is returned by the method encapsulates the state of the asynchronous invocation:AsyncResult begin_

https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations#PythonMappingforOperations-Out-ParametersinPython

Python

class AsyncResult:
 def cancel()

 def getCommunicator()
 def getConnection()
 def getProxy()
 def getOperation()

 def isCompleted()
 def waitForCompleted()

 def isSent()
 def waitForSent()

 def throwLocalException()

 def sentSynchronously()

The methods have the following semantics:

cancel()
This method prevents a queued invocation from being sent or, if the invocation has already been sent, ignores a reply if the server sends one. can

 is a local operation and has no effect on the server. A canceled invocation is considered to be completed, meaning returns cel isCompleted
true, and the result of the invocation is an .Ice.InvocationCanceledException

getCommunicator()
This method returns the communicator that sent the invocation.

getConnection()
This method returns the connection that was used for the invocation. Note that, for typical asynchronous proxy invocations, this method returns a
nil value because the possibility of automatic retries means the connection that is currently in use could change unexpectedly. The getConnecti

 method only returns a non-nil value when the object is obtained by calling on a on AsyncResult begin_flushBatchRequests Connection
object.

getProxy()
This method returns the proxy that was used to call the method, or nil if the object was not obtained via an asynchronous begin_ AsyncResult
proxy invocation.

getOperation()
This method returns the name of the operation.

isCompleted()
This method returns true if, at the time it is called, the result of an invocation is available, indicating that a call to the method will not block end_
the caller. Otherwise, if the result is not yet available, the method returns false.

waitForCompleted()
This method blocks the caller until the result of an invocation becomes available.

isSent()
When you call the method, the Ice run time attempts to write the corresponding request to the client-side transport. If the transport cannot begin_
accept the request, the Ice run time queues the request for later transmission. returns true if, at the time it is called, the request has been isSent
written to the local transport (whether it was initially queued or not). Otherwise, if the request is still queued or an exception occurred before the
request could be sent, returns false.isSent

waitForSent()
This method blocks the calling thread until a request has been written to the client-side transport, or an exception occurs. After waitForSent
returns, returns true if the request was successfully written to the client-side transport, or false if an exception occurred. In the case of a isSent
failure, you can call the corresponding method or to obtain the exception.end_ throwLocalException

throwLocalException()
This method throws the local exception that caused the invocation to fail. If no exception has occurred yet, does throwLocalException
nothing.

sentSynchronously()
This method returns true if a request was written to the client-side transport without first being queued. If the request was initially queued, sentSy

 returns false (independent of whether the request is still in the queue or has since been written to the client-side transport).nchronously

Back to Top ^

Polling for Completion in Python
The methods allow you to poll for call completion. Polling is useful in a variety of cases. As an example, consider the following simple AsyncResult
interface to transfer files from client to server:

Slice

interface FileTransfer
{
 void send(int offset, ByteSeq bytes);
}

The client repeatedly calls to send a chunk of the file, indicating at which offset in the file the chunk belongs. A naïve way to transmit a file would be send
along the following lines:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0
while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk
 ft.send(offset, bytes) # Send the chunk
 offset += len(bytes.length)

This works, but not very well: because the client makes synchronous calls, it writes each chunk on the wire and then waits for the server to receive the
data, process it, and return a reply before writing the next chunk. This means that both client and server spend much of their time doing nothing — the
client does nothing while the server processes the data, and the server does nothing while it waits for the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

Python

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0

results = []
numRequests = 5

while not file.eof():
 bytes = file.read(chunkSize) # Read a chunk

 # Send up to numRequests + 1 chunks asynchronously.
 r = ft.begin_send(offset, bytes)
 offset += len(bytes)

 # Wait until this request has been passed to the transport.
 r.waitForSent()
 results.append(r)

 # Once there are more than numRequests, wait for the least
 # recent one to complete.
 while len(results) > numRequests:
 r = results[0]
 del results[0]
 r.waitForCompleted()

Wait for any remaining requests to complete.
while len(results) > 0:
 r = results[0]
 del results[0]
 r.waitForCompleted()

With this code, the client sends up to chunks before it waits for the least recent one of these requests to complete. In other words, the numRequests + 1
client sends the next request without waiting for the preceding request to complete, up to the limit set by . In effect, this allows the client to numRequests
"keep the pipe to the server full of data": the client keeps sending data, so both client and server continuously do work.

Obviously, the correct chunk size and value of depend on the bandwidth of the network as well as the amount of time taken by the server to numRequests
process each request. However, with a little testing, you can quickly zoom in on the point where making the requests larger or queuing more requests no
longer improves performance. With this technique, you can realize the full bandwidth of the link to within a percent or two of the theoretical bandwidth limit
of a native socket connection.

Back to Top ^

Completion Callbacks in Python
The method accepts three optional callback arguments that allow you to be notified asynchronously when a request completes. Here are the begin_
corresponding methods for the operation:getName

Python

def begin_getName(self, number, _response=None, _ex=None, _sent=None, _ctx=None)

The value you pass for the response callback (), the exception callback (), or the sent callback () argument must be a _response _ex _sent callable object
such as a function or method. The response callback is invoked when the request completes successfully, and the exception callback is invoked when the
operation raises an exception. (The sent callback is primarily used for .)flow control

For example, consider the following callbacks for an invocation of the operation:getName

Python

def getNameCB(name):
 print "Name is: " + name

def failureCB(ex):
 print "Exception is: " + str(ex)

The response callback parameters depend on the operation signature. If the operation has a non- return type, the first parameter of the response void
callback is the return value. The return value (if any) is followed by a parameter for each out-parameter of the corresponding Slice operation, in the order of
declaration.

The exception callback is invoked if the invocation fails because of an Ice run time exception, or if the operation raises a user exception.

To inform the Ice run time that you want to receive callbacks for the completion of the asynchronous call, you pass the callbacks to the method:begin_

Python

e = EmployeesPrx.checkedCast(...)

e.begin_getName(99, getNameCB, failureCB)

Although the signature of an asynchronous proxy method implies that all of the callbacks are optional and therefore can be supplied in any combination,
Ice enforces the following semantics at run time:

If you omit all callbacks, you must call the method explicitly as described .end_ earlier
If you supply either a response callback or a sent callback (or both), you must also supply an exception callback.
You may omit the response callback for an operation that returns no data (that is, an operation with a return type and no out-parameters).void

Back to Top ^

Sharing State Between and Methods in Pythonbegin_ end_
It is common for the method to require access to some state that is established by the code that calls the method. As an example, consider end_ begin_
an application that asynchronously starts a number of operations and, as each operation completes, needs to update different user interface elements with
the results. In this case, the method knows which user interface element should receive the update, and the method needs access to that begin_ end_
element.

Assuming that we have a class that designates a particular user interface element, you could pass different widgets by storing the widget to be Widget
used as a member of a callback class:

Python

class MyCallback(object):
 def __init__(self, w):
 self._w = w

 def getNameCB(self, name):
 self._w.writeString(name)

 def failureCB(self, ex):
 print "Exception is: " + str(ex)

For this example, we assume that widgets have a method that updates the relevant UI element.writeString

When you call the method, you pass the appropriate callback instance to inform the method how to update the display:begin_ end_

Python

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

Invoke the getName operation with different widget callbacks.
cb1 = MyCallback(widget1)
e.begin_getName(99, cb1.getNameCB, cb1.failureCB)
cb2 = MyCallback(widget2)
e.begin_getName(24, cb2.getNameCB, cb2.failureCB)

The callback class provides a simple and effective way for you to pass state between the point where an operation is invoked and the point where its
results are processed. Moreover, if you have a number of operations that share common state, you can pass the same callback instance to multiple
invocations. (If you do this, your callback methods may need to use synchronization.)

For those situations in which a stateless callback is preferred, you can use a lambda function to pass state to a callback. Consider the following example:

Python

def getNameCB(name, w):
 w.writeString(name)

def failureCB(ex):
 print "Exception is: " + str(ex)

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

Use lambda functions to pass state.
e.begin_getName(99, lambda name: getNameCB(name, widget1), failureCB)
e.begin_getName(24, lambda name: getNameCB(name, widget2), failureCB)

This strategy eliminates the need to encapsulate shared state in a callback class. Since lambda functions can refer to variables in the enclosing scope,
they provide a convenient way to pass state directly to your callback.

Back to Top ^

Asynchronous Oneway Invocations in Python
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call the method on a oneway proxy for an operation that returns values or raises a user exception, the begin_ begin_
method throws a .RuntimeError

The callback signatures look exactly as for a twoway invocation, but the response method is never called and may be omitted.

Back to Top ^

Flow Control in Python
Asynchronous method invocations never block the thread that calls the method: the Ice run time checks to see whether it can write the request to begin_
the local transport. If it can, it does so immediately in the caller's thread. (In that case, returns true.) Alternatively, if AsyncResult.sentSynchronously
the local transport does not have sufficient buffer space to accept the request, the Ice run time queues the request internally for later transmission in the
background. (In that case, returns false.)AsyncResult.sentSynchronously

This creates a potential problem: if a client sends many asynchronous requests at the time the server is too busy to keep up with them, the requests pile
up in the client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the number of requests that are queued so, if that number exceeds some threshold,
the client stops invoking more operations until some of the queued operations have drained out of the local transport.

You can supply a sent callback to be notified when the request was successfully sent:

Python

def response(name):
 # ...

def exception(ex):
 # ...

def sent(sentSynchronously):
 # ...

You inform the Ice run time that you want to be informed when a call has been passed to the local transport as usual:

Python

e.begin_getName(99, response, exception, sent)

If the Ice run time can immediately pass the request to the local transport, it does so and invokes the sent callback from the thread that calls the begin_
method. On the other hand, if the run time has to queue the request, it calls the sent callback from a different thread once it has written the request to the
local transport. The boolean parameter indicates whether the request was sent synchronously or was queued.sentSynchronously

The sent callback allows you to limit the number of queued requests by counting the number of requests that are queued and decrementing the count
when the Ice run time passes a request to the local transport.

Back to Top ^

Asynchronous Batch Requests in Python
You can invoke operations via oneway proxies asynchronously, provided the operation has return type, does not have any out-parameters, and does void
not raise user exceptions. If you call the method on a oneway proxy for an operation that returns values or raises a user exception, the mebegin_ begin_
thod throws a .RuntimeError

A batch oneway invocation never calls the callbacks unless an error occurs before the request is queued. The returned for a batch oneway AsyncResult
invocation is always completed and indicates the successful queuing of the batch invocation. The returned result can also be marked completed if an error
occurs before the request is queued.

Applications that send can either flush a batch explicitly or allow the Ice run time to flush automatically. The proxy method batched requests ice_flushBa
 performs an immediate flush using the synchronous invocation model and may block the calling thread until the entire message can be tchRequests

sent. Ice also provides asynchronous versions of this method so you can flush batch requests asynchronously.

begin_ice_flushBatchRequests and are proxy methods that flush any batch requests queued by that proxy.end_ice_flushBatchRequests

In addition, similar methods are available on the communicator and the object that is returned by . These Connection AsyncResult.getConnection
methods flush batch requests sent via the same communicator and via the same connection, respectively.

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Batched+Invocations

Concurrency Semantics for AMI in Python
The Ice run time always invokes your callback methods from a separate thread, with one exception: it calls the sent callback from the thread calling the beg

 method if the request could be sent synchronously. In the callback, you know which thread is calling the callback by looking at the in_ sent sentSynchr
 parameter.onously

Back to Top ^

See Also

Python Mapping for Operations
Request Contexts
Batched Invocations

https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/AMI+in+Python+with+Futures
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Python

	AMI in Python with AsyncResult

