
Server-Side Python Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run time: by implementing methods in a servant class, you provide the hook that
gets the thread of control from the Ice server-side run time into your application code.

On this page:

Skeleton Classes in Python
Ice.Object Base Class for Python Servants
Servant Classes in Python

Server-Side Normal and idempotent Operations in Python

Skeleton Classes in Python
On the client side, interfaces map to proxy classes. On the server side, interfaces map to . A skeleton is an abstract base class from which skeleton classes
you derive your servant class and define a method for each operation on the corresponding interface. For example, consider our for the Slice definition Node
interface:

Slice

module Filesystem
{
 interface Node
 {
 idempotent string name();
 }
 // ...
}

The Python mapping generates the following definition for this interface:

Python

class Node(Ice.Object):
 def __init__(self):
 # ...

 #
 # Operation signatures.
 #
 # def name(self, current=None):

The important points to note here are:

As for the client side, Slice modules are mapped to Python modules with the same name, so the skeleton class definitions are part of the Filesys
 module.tem

The name of the skeleton class is the same as the Slice interface ().Node
The skeleton class contains a comment summarizing the method signature of each operation in the Slice interface.
The skeleton class is an abstract base class because its constructor prevents direct instantiation of the class.
The skeleton class inherits from (which forms the root of the Ice object hierarchy).Ice.Object

Back to Top ^

Ice.Object Base Class for Python Servants
Object is mapped to the class in Python:Ice.Object

https://doc.zeroc.com/display/IceMatlab/Server-Side+Slice-to-Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Python
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System

Python

class Object(object):
 def ice_isA(self, id, current=None):
 # ...
 def ice_ping(self, current=None):
 # ...
 def ice_ids(self, current=None):
 # ...
 def ice_id(self, current=None):
 # ...

 @staticmethod
 def ice_staticId():
 # ...

The methods of behave as follows:Ice.Object

ice_isA
This method returns if target object implements the given , and otherwise.true type ID false

ice_ping
ice_ping provides a basic reachability test for the servant.

ice_ids
This method returns a string array representing all of the implemented by this servant, including .type IDs ::Ice::Object

ice_id
This method returns the of the most-derived interface implemented by this servant.type ID

ice_staticID
This static method returns the of the target class: when called on .type ID ::Ice::Object Ice.Object

Back to Top ^

Servant Classes in Python
In order to provide an implementation for an Ice object, you must create a servant class that inherits from the corresponding skeleton class. For example,
to create a servant for the interface, you could write:Node

Python

import Filesystem

class NodeI(Filesystem.Node):
 def __init__(self, name):
 self._name = name

 def name(self, current=None):
 return self._name

By convention, servant classes have the name of their interface with an -suffix, so the servant class for the interface is called . (This is a I Node NodeI
convention only: as far as the Ice run time is concerned, you can choose any name you prefer for your servant classes.) Note that extends NodeI Filesys

, that is, it derives from its skeleton class.tem._NodeDisp

As far as Ice is concerned, the class must implement only a single method: the method that is defined in the interface. This makes the NodeI name Node
servant class a concrete class that can be instantiated. You can add other member functions and data members as you see fit to support your
implementation. For example, in the preceding definition, we added a member and a constructor. (Obviously, the constructor initializes the _name _name
member and the function returns its value.)name

Back to Top ^

Server-Side Normal and Operations in Pythonidempotent

Whether an operation is an ordinary operation or an operation has no influence on the way the operation is mapped. To illustrate this, idempotent
consider the following interface:

https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Type+IDs

Slice

interface Example
{
 void normalOp();
 idempotent void idempotentOp();
}

The mapping for this interface is shown below:

Python

class Example(Ice.Object):
 # ...

 #
 # Operation signatures.
 #
 # def normalOp(self, current=None):
 # def idempotentOp(self, current=None):

Note that the signatures of the methods are unaffected by the qualifier.idempotent

Back to Top ^

See Also

Slice for a Simple File System
Python Mapping for Interfaces
Parameter Passing in Python
Raising Exceptions in Python

https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Python
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Python
https://doc.zeroc.com/display/IceMatlab/Server-Side+Slice-to-Python+Mapping
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Python

	Server-Side Python Mapping for Interfaces

