
Parameter Passing in Python

Parameter passing on the server side follows the rules for the . Additionally, every operation has a trailing parameter of type . For client side Ice.Current
example, the operation of the interface has no parameters, but the method in a Python servant has a parameter. We will name Node name current
ignore this parameter for now.

On this page:

Server-Side Mapping for Parameters in Python
Thread-Safe Marshaling in Python

Solution 1: Copying
Solution 2: Copy on Write
Solution 3: Marshal Immediately

Server-Side Mapping for Parameters in Python
For each parameter of a Slice operation, the Python mapping generates a corresponding parameter for the method in the skeleton. An operation in
returning multiple values returns them in a tuple consisting of a non- return value, if any, followed by the parameters in the order of declaration. void out
An operation returning only one value simply returns the value itself.

To illustrate these rules, consider the following interface that passes string parameters in all possible directions:

Slice

interface Example
{
 string op1(string sin);
 void op2(string sin, out string sout);
 string op3(string sin, out string sout);
}

The generated skeleton class for this interface looks as follows:

Python

class Example(Ice.Object):
 def __init__(self):
 # ...

 #
 # Operation signatures.
 #
 # def op1(self, sin, current=None):
 # def op2(self, sin, current=None):
 # def op3(self, sin, current=None):

The signatures of the Python methods are identical because they all accept a single in parameter, but their implementations differ in the way they return
values. For example, we could implement the operations as follows:

An operation returns multiple values when it declares multiple out parameters, or when it declares a non- return type and at least one out void
parameter.

https://doc.zeroc.com/display/IceMatlab/Server-Side+Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Python
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

Python

class ExampleI(Example):
 def op1(self, sin, current=None):
 print sin # In params are initialized
 return "Done" # Return value

 def op2(self, sin, current=None):
 print sin # In params are initialized
 return "Hello World!" # Out parameter

 def op3(self, sin, current=None):
 print sin # In params are initialized
 return ("Done", "Hello World!")

Notice that and return their string values directly, whereas returns a tuple consisting of the return value followed by the out parameter.op1 op2 op3

This code is in no way different from what you would normally write if you were to pass strings to and from a function; the fact that remote procedure calls
are involved does not impact your code in any way. The same is true for parameters of other types, such as proxies, classes, or dictionaries: the
parameter passing conventions follow normal Python rules and do not require special-purpose API calls.

Back to Top ^

Thread-Safe Marshaling in Python
The marshaling semantics of the Ice run time and the Python interpreter present a subtle thread safety issue that arises when an operation returns data by
reference. For Python applications, this can affect servant methods that return instances of Slice classes, structures, sequences, or dictionaries.

The potential for corruption occurs whenever a servant returns an instance of one of these types, yet continues to hold a reference to that data. For
example, consider the following servant implementation:

Python

class GridI(Grid):
 def __init__(self):
 self._grid = # ...

 def getGrid(self, current):
 return self._grid

 def setValue(self, x, y, val, current):
 self._grid[x][y] = val

Suppose that a client invoked the operation, and another client invoked the operation. The interpreter allows a thread to dispatch the getGrid setValue
call to , but before control returns to the Ice run time, the interpreter switches threads to allow the call to to proceed. The problem is getGrid setValue
that can modify the data before the thread that invoked has a chance to marshal its results. In most cases this won't cause a failure, setValue getGrid
but it does mean that an invocation might return different results than it intended. Furthermore, adding synchronization to the and opergetGrid setValue
ations would not fix the race condition because the Ice run time performs its marshaling outside of this synchronization.

Solution 1: Copying

One solution is to implement accessor operations, such as , so that they return copies of any data that might change. There are several getGrid
drawbacks to this approach:

Excessive copying can have an adverse affect on performance.
The operations must return deep copies in order to avoid similar problems with nested values.
The code to create deep copies is tedious and error-prone to write.

Solution 2: Copy on Write

In the C-based implementation of Python ("Cython"), only one thread at a time can be executing in the interpreter. However, depending on your t
, there may be multiple Ice threads waiting to enter the interpreter. You should write your code to assume that the hread pool configuration

interpreter can switch to a different thread at any time.

https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Thread+Pools

Another solution is to make copies of the affected data only when it is modified. In the revised code shown below, replaces with a copy setValue _grid
that contains the new element, leaving the previous contents of unchanged:_grid

Python

class GridI(Grid):
 def __init__(self):
 self._lock = threading.Lock()

 def getGrid(self, current):
 with self._lock:
 return self._grid

 def setValue(self, x, y, val, current):
 with self._lock:
 newGrid = # shallow copy...
 newGrid[x][y] = val
 self._grid = newGrid

This allows the Ice run time to safely marshal the return value of because the array is never modified again. For applications where data is read getGrid
more often than it is written, this solution is more efficient than the previous one because accessor operations do not need to make copies. Furthermore,
intelligent use of shallow copying can minimize the overhead in mutating operations.

Solution 3: Marshal Immediately

Finally, a third approach is to modify the servant mapping using metadata in order to force the marshaling to occur immediately within your
synchronization. Annotating a Slice operation with the metadata causes additional code to be generated, but only if that operation marshaled-result
returns one or more of the mutable types listed earlier. The metadata directive has the following effects:

For an operation that returns at least one mutable type, the Slice compiler generates a static method named . This op OpMarshaledResult
method takes two parameters: the result value (or result tuple, if the operation returns multiple values), and a . The method marshals the Current
results immediately, and the servant must supply the in order for the results to be marshaled correctly. Your servant must return the Current
result of this method as its return value.
A servant method can still optionally return its results using the regular mapping instead, as if the metadata was not marshaled-result
present. Use caution to ensure no unexpected behavior can occur.

The metadata directive has no effect on the proxy mapping, nor does it generate a method for Slice operations that return or MarshaledResult void
return only immutable values.

After applying the metadata, we can now implement the servant as follows:Grid

Python

class GridI(Grid):
 def __init__(self):
 self._lock = threading.Lock()

 def getGrid(self, current):
 with self._lock:
 return Grid.GetGridMarshaledResult(self._grid, current) # _grid is marshaled immediately

 def setValue(self, x, y, val, current):
 with self._lock:
 self._grid[x][y] = val # this is safe

Back to Top ^

See Also

Server-Side Python Mapping for Interfaces
Python Mapping for Operations
Raising Exceptions in Python
The Current Object

You can also annotate an interface with the metadata and it will be applied to all of the interface's operations.marshaled-result

https://doc.zeroc.com/display/IceMatlab/Server-Side+Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Python+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Python
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

https://doc.zeroc.com/display/IceMatlab/Server-Side+Python+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Raising+Exceptions+in+Python

	Parameter Passing in Python

