
Ruby Mapping for Sequences

On this page:

Mapping Slice Sequences to Ruby Arrays
Mapping for Byte Sequences in Ruby

Mapping Slice Sequences to Ruby Arrays
A Slice maps to a Ruby array; the only exception is a sequence of bytes, which . The use of a Ruby array means that the sequence maps to a string
mapping does not generate a separate named type for a Slice sequence. It also means that you can take advantage of all the array functionality provided
by Ruby. For example:

Slice

sequence<Fruit> FruitPlatter;

We can use the sequence as shown below:FruitPlatter

Ruby

platter = [Fruit::Apple, Fruit::Pear]
platter.push(Fruit::Orange)

The Ice run time validates the elements of a sequence to ensure that they are compatible with the declared type; a exception is raised if an TypeError
incompatible type is encountered.

Back to Top ^

Mapping for Byte Sequences in Ruby
A Ruby string can contain arbitrary 8-bit binary data, therefore it is a more efficient representation of a byte sequence than a Ruby array in both memory
utilization and throughput performance.

When receiving a byte sequence (as the result of an operation, as an out parameter, or as a member of a data structure), the value is always represented
as a string. When sending a byte sequence as an operation parameter or data member, the Ice run time accepts both a string and an array of integers as
legal values. For example, consider the following Slice definitions:

Slice

// Slice
sequence<byte> Data;

interface I
{
 void sendData(Data d);
 Data getData();
}

The interpreter session below uses these Slice definitions to demonstrate the mapping for a sequence of bytes:

https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Structures
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Dictionaries
https://doc.zeroc.com/display/IceMatlab/Sequences

Ruby

> proxy = ...
> proxy.sendData("\0\1\2\3") # Send as a string
> proxy.sendData([0, 1, 2, 3]) # Send as an array
> d = proxy.getData()
> d.class
=> String
> d
=> "\000\001\002\003"

The two invocations of are equivalent; however, the second invocation incurs additional overhead as the Ice run time must validate the type sendData
and range of each array element.

Back to Top ^

See Also

Sequences
Ruby Mapping for Identifiers
Ruby Mapping for Modules
Ruby Mapping for Built-In Types
Ruby Mapping for Enumerations
Ruby Mapping for Structures
Ruby Mapping for Dictionaries
Ruby Mapping for Constants
Ruby Mapping for Exceptions
Ruby Mapping for Interfaces
Ruby Mapping for Operations

https://doc.zeroc.com/display/IceMatlab/Sequences
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Identifiers
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Modules
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Built-In+Types
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Enumerations
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Structures
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Dictionaries
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Constants
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Structures
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Dictionaries

	Ruby Mapping for Sequences

