
Ruby Mapping for Operations

On this page:

Basic Ruby Mapping for Operations
Normal and idempotent Operations in Ruby
Passing Parameters in Ruby

In-Parameters in Ruby
Out-Parameters in Ruby
Parameter Type Mismatches in Ruby
Null Parameters in Ruby
Optional Parameters in Ruby

Exception Handling in Ruby

Basic Ruby Mapping for Operations
As we saw in the , for each on an interface, the proxy class contains a corresponding method with the same name. Ruby mapping for interfaces operation
To invoke an operation, you call it via the proxy. For example, here is part of the definitions for our :file system

Slice

module Filesystem
{
 interface Node
 {
 idempotent string name();
 }
 // ...
}

The operation returns a value of type . Given a proxy to an object of type , the client can invoke the operation as follows:name string Node

Ruby

node = ... # Initialize proxy
name = node.name() # Get name via RPC

Back to Top ^

Normal and Operations in Rubyidempotent
You can add an qualifier to a Slice operation. As far as the signature for the corresponding proxy method is concerned, idempotent has no idempotent
effect. For example, consider the following interface:

Slice

interface Example
{
 string op1();
 idempotent string op2();
}

The proxy class for this is:

https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Classes
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System#SliceforaSimpleFileSystem-CompleteDefinition

Ruby

class ExamplePrx < Ice::ObjectPrx
 def op1(context=nil)

 def op2(context=nil)
end

Because affects an aspect of call dispatch, not interface, it makes sense for the two methods to look the same.idempotent

Back to Top ^

Passing Parameters in Ruby

In-Parameters in Ruby

All parameters are passed by reference in the Ruby mapping; it is guaranteed that the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from client to server:

Slice

struct NumberAndString
{
 int x;
 string str;
}

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer
{
 void op1(int i, float f, bool b, string s);
 void op2(NumberAndString ns, StringSeq ss, StringTable st);
 void op3(ClientToServer* proxy);
}

The Slice compiler generates the following proxy for this definition:

Ruby

class ClientToServerPrx < Ice::ObjectPrx
 def op1(i, f, b, s, context=nil)

 def op2(ns, ss, st, context=nil)

 def op3(proxy, context=nil)
end

Given a proxy to a interface, the client code can pass parameters as in the following example:ClientToServer

Ruby

p = ... # Get proxy...

p.op1(42, 3.14, true, "Hello world!") # Pass simple literals

i = 42
f = 3.14
b = true
s = "Hello world!"
p.op1(i, f, b, s) # Pass simple variables

ns = NumberAndString.new()
ns.x = 42
ns.str = "The Answer"
ss = ["Hello world!"]
st = {}
st[0] = ns
p.op2(ns, ss, st) # Pass complex variables

p.op3(p) # Pass proxy

Back to Top ^

Out-Parameters in Ruby

As in Java, Ruby functions do not support reference arguments. That is, it is not possible to pass an uninitialized variable to a Ruby function in order to
have its value initialized by the function. The overcomes this limitation with the use of that represent each parameter. Java mapping holder classes out
The Ruby mapping takes a different approach, one that is more natural for Ruby users.

The semantics of parameters in the Ruby mapping depend on whether the operation returns one value or multiple values. An operation returns out
multiple values when it has declared multiple parameters, or when it has declared a non- return type and at least one parameter.out void out

If an operation returns multiple values, the client receives them in the form of a . A non- return value, if any, is always the first element in result array void
the result array, followed by the parameters in the order of declaration.out

If an operation returns only one value, the client receives the value itself.

Here again are the same Slice definitions we saw earlier, but this time with all parameters being passed in the direction:out

Slice

struct NumberAndString
{
 int x;
 string str;
}

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient
{
 int op1(out float f, out bool b, out string s);
 void op2(out NumberAndString ns,
 out StringSeq ss,
 out StringTable st);
 void op3(out ServerToClient* proxy);
}

The Ruby mapping generates the following code for this definition:

https://doc.zeroc.com/display/IceMatlab/Java+Mapping+for+Operations#JavaMappingforOperations-out

Ruby

class ClientToServerPrx < Ice::ObjectPrx
 def op1(context=nil)

 def op2(context=nil)

 def op3(context=nil)
end

Given a proxy to a interface, the client code can receive the results as in the following example:ServerToClient

Ruby

p = ... # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()

The operations have no parameters, therefore no arguments are passed to the proxy methods. Since and return multiple values, their result in op1 op2
arrays are unpacked into separate values, whereas the return value of requires no unpacking.op3

Back to Top ^

Parameter Type Mismatches in Ruby

Although the Ruby compiler cannot check the types of arguments passed to a method, the Ice run time does perform validation on the arguments to a
proxy invocation and reports any type mismatches as a exception.TypeError

Back to Top ^

Null Parameters in Ruby

Some Slice types naturally have "empty" or "not there" semantics. Specifically, sequences, dictionaries, and strings all can be , but the corresponding nil
Slice types do not have the concept of a null value. To make life with these types easier, whenever you pass as a parameter or return value of type nil
sequence, dictionary, or string, the Ice run time automatically sends an empty sequence, dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested data types, members that are sequences, dictionaries, or strings
automatically arrive as an empty value at the receiving end. This saves you having to explicitly initialize, for example, every string element in a large
sequence before sending the sequence in order to avoid a run-time error. Note that using null parameters in this way does create null semantics for not
Slice sequences, dictionaries, or strings. As far as the object model is concerned, these do not exist (only sequences, dictionaries, and strings do). empty
For example, it makes no difference to the receiver whether you send a string as or as an empty string: either way, the receiver sees an empty string.nil

Back to Top ^

Optional Parameters in Ruby

Optional parameters use the same mapping as required parameters. The only difference is that can be passed as the value of an optional Ice::Unset
parameter or return value. Consider the following operation:

Slice

optional(1) int execute(optional(2) string params, out optional(3) float value);

A client can invoke this operation as shown below:

https://doc.zeroc.com/display/IceMatlab/Operations#Operations-optional

Ruby

i, v = proxy.execute("--file log.txt")
i, v = proxy.execute(Ice::Unset)

if v != Ice::Unset
 puts "value = " + v.to_s
end

A well-behaved program must always compare an optional parameter to prior to using its value. Keep in mind that the marker Ice::Unset Ice::Unset

value has different semantics than . Since is a legal value for certain Slice types, the Ice run time requires a separate marker value so that it can nil nil

determine whether an optional parameter is set. An optional parameter set to is considered to be set. If you need to distinguish between an unset nil

parameter and a parameter set to , you can do so as follows:nil

Ruby

if optionalParam == Ice::Unset
 puts "optionalParam is unset"
elsif optionalParam == nil
 puts "optionalParam is None"
else
 puts "optionalParam = " + optionalParam
end

Back to Top ^

Exception Handling in Ruby
Any operation invocation may throw a and, if the operation has an exception specification, may also throw . Suppose run-time exception user exceptions
we have the following simple interface:

Slice

exception Tantrum
{
 string reason;
}

interface Child
{
 void askToCleanUp() throws Tantrum;
}

Slice exceptions are thrown as Ruby exceptions, so you can simply enclose one or more operation invocations in a block:begin-rescue

Ruby

child = ... # Get child proxy...

begin
 child.askToCleanUp()
rescue Tantrum => t
 puts "The child says: #{t.reason}"
end

Typically, you will catch only a few exceptions of specific interest around an operation invocation; other exceptions, such as unexpected run-time errors,
will usually be handled by exception handlers higher in the hierarchy. For example:

https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Exceptions#RubyMappingforExceptions-runtime
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Exceptions#RubyMappingforExceptions-user

Ruby

def run()
 child = ... # Get child proxy...
 begin
 child.askToCleanUp()
 rescue Tantrum => t
 puts "The child says: #{t.reason}"
 child.scold() # Recover from error...
 end
 child.praise() # Give positive feedback...
end

begin
 # ...
 run()
 # ...
rescue Ice::Exception => ex
 print ex.backtrace.join("\n")
end

This code handles a specific exception of local interest at the point of call and deals with other exceptions generically. (This is also the strategy we used for
our first simple application in .)Hello World Application

Back to Top ^

See Also

Operations
Hello World Application
Slice for a Simple File System
Ruby Mapping for Operations
Ruby Mapping for Interfaces
Ruby Mapping for Exceptions

https://doc.zeroc.com/display/IceMatlab/Hello+World+Application
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Hello+World+Application
https://doc.zeroc.com/display/IceMatlab/Slice+for+a+Simple+File+System
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Exceptions
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Interfaces
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Classes

	Ruby Mapping for Operations

