
1.

2.

Ruby Mapping for Classes

On this page:

Basic Ruby Mapping for Classes
Inheritance from Ice::Value in Ruby
Class Data Members in Ruby
Class Constructors in Ruby
Class Operations in Ruby
Value Factories in Ruby

Basic Ruby Mapping for Classes
A Slice maps to a Ruby class with the . For each Slice data member, the generated class contains an instance variable and accessors to class same name
read and write it, just as for structures and exceptions. Consider the following class definition:

Slice

class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

The Ruby mapping generates the following code for this definition:

Ruby

class TimeOfDay < ::Ice::Value
 def initialize(hour=0, minute=0, second=0)
 @hour = hour
 @minute = minute
 @second = second
 end

 attr_accessor :hours, :minutes, :seconds
end

There are a number of things to note about the generated code:

The generated class derives from . This reflects the semantics of Slice classes in that all classes implicitly inherit from TimeOfDay Ice::Value I
, which is the ultimate ancestor of all classes. Note that is the same as . In other words, you ce::Value Ice::Value not Ice::ObjectPrx cann

 pass a class where a proxy is expected and vice versa.ot
The constructor defines an instance variable for each Slice data member.

There is quite a bit to discuss here, so we will look at each item in turn.

Back to Top ^

Inheritance from in RubyIce::Value
Like interfaces, classes implicitly inherit from a common base class, . However classes inherit from instead of Ice::Value Ice::Value Ice::

 (which is at the base of the inheritance hierarchy for proxies). As a result, you cannot pass a class where a proxy is expected (and vice versa) ObjectPrx
because the base types for classes and proxies are not compatible.

Ice::Value contains a number of methods:

https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Ruby
https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Identifiers

Ruby

class Value
 def inspect
 ::Ice::__stringify(self, self.class::ICE_TYPE)
 end
 def ice_id()
 self.class::ICE_ID
 end
 def Value.ice_staticId()
 self::ICE_ID
 end
end

The methods behave as follows:

ice_id
This method returns the actual run-time of the object. If you call through a reference to a base instance, the returned type id is type ID ice_id
the actual (possibly more derived) type ID of the instance.

ice_staticId
This method returns the static of the class.type ID

ice_preMarshal
If the object supports this method, the Ice run time invokes it just prior to marshaling the object's state, providing the opportunity for the object to
validate its declared data members.

ice_postUnmarshal
If the object supports this method, the Ice run time invokes it after unmarshaling the object's state. An object typically defines this method when it
needs to perform additional initialization using the values of its declared data members.
ice_getSlicedData
This functions returns the object if the value has been during un-marshaling or otherwise.SlicedData sliced nil

Note that neither nor the generated class override and , so the default implementations apply.Ice::Value hash ==

Back to Top ^

Class Data Members in Ruby
By default, data members of classes are mapped exactly as for structures and exceptions: for each data member in the Slice definition, the generated
class contains a corresponding instance variable and accessor methods.

Optional data members use the same mapping as required data members, but an optional data member can also be set to the marker value tIce::Unset
o indicate that the member is unset. A well-behaved program must compare an optional data member to before using the member's value:Ice::Unset

Ruby

v = ...
if v.optionalMember == Ice::Unset
 puts "optionalMember is unset"
else
 puts "optionalMember = " + v.optionalMember
end

The marker value has different semantics than . Since is a legal value for certain Slice types, the Ice run time requires a separate Ice::Unset nil nil
marker value so that it can determine whether an optional value is set. An optional value set to is considered to be set. If you need to distinguish nil
between an unset value and a value set to , you can do so as follows:nil

https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Slicing+Values+and+Exceptions
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members

Ruby

v = ...
if v.optionalMember == Ice::Unset
 puts "optionalMember is unset"
elsif v.optionalMember == nil
 puts "optionalMember is nil"
else
 puts "optionalMember = " + v.optionalMember
end

If you wish to restrict access to a data member, you can modify its visibility using the metadata directive. The presence of this directive causes protected
the Slice compiler to generate the data member with protected visibility. As a result, the member can be accessed only by the class itself or by one of its
subclasses. For example, the class shown below has the metadata directive applied to each of its data members:TimeOfDay protected

Slice

class TimeOfDay
{
 ["protected"] short hour; // 0 - 23
 ["protected"] short minute; // 0 - 59
 ["protected"] short second; // 0 - 59
}

The Slice compiler produces the following generated code for this definition:

Ruby

class TimeOfDay < ::Ice::Value

 def initialize(hour=0, minute=0, second=0)
 @hour = hour
 @minute = minute
 @second = second
 end

 attr_accessor :hours, :minutes, :seconds
 protected :hours, :hours=
 protected :minutes, :minutes=
 protected :seconds, :seconds=
end

For a class in which all of the data members are protected, the metadata directive can be applied to the class itself rather than to each member
individually. For example, we can rewrite the class as follows:TimeOfDay

Slice

["protected"] class TimeOfDay
{
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
}

Class Constructors in Ruby
Classes have a constructor that assigns to each data member a default value appropriate for its type:

Data Member Type Default Value

string Empty string

enum First enumerator in enumeration

struct Default-constructed value

Numeric Zero

bool False

sequence Null

dictionary Null

class/interface Null

You can also declare different for data members of primitive and enumerated types.default values

For derived classes, the constructor has one parameter for each of the base class's data members, plus one parameter for each of the derived class's data
members, in base-to-derived order.

Pass the marker value as the value of any that you wish to be unset.Ice::Unset optional data members

Back to Top ^

Class Operations in Ruby

With the Ruby mapping, operations in classes are not mapped at all into the corresponding Ruby class. The generated Ruby class is the same whether the
Slice class has operations or not.

Back to Top ^

Value Factories in Ruby

Value factories allow you to create classes derived from the Ruby class generated by the Slice compiler, and tell the Ice run time to create instances of
these classes when unmarshaling. For example, with the following simple interface:

Slice

class CustomTimeOfDay extends TimeOfDay
{
 public function format() { ... prints formatted data members ... }
}

You then create and register a value factory for your custom class with your Ice communicator:

Deprecated Feature

Operations on classes are deprecated as of Ice 3.7. Skip this section unless you need to communicate with old applications that rely on this
feature.

While value factories were necessary in previous Ice versions when using classes with operations (a now deprecated feature) with the Ruby
mapping, value factories may be used for any kind of class and are deprecated.not

https://doc.zeroc.com/display/IceMatlab/Simple+Classes
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/Value+Factories

Ruby

class ValueFactory
 def create(type)
 fail unless type == M::TimeOfDay::ice_staticId()
 TimeOfDayI.new
 end
end

communicator = ...
communicator.getValueFactoryManager().add(ValueFactory.new, M::TimeOfDay::ice_staticId())

Back to Top ^

See Also

Classes
Type IDs
Optional Data Members
The Current Object
Value Factories

https://doc.zeroc.com/display/IceMatlab/Classes
https://doc.zeroc.com/display/IceMatlab/Type+IDs
https://doc.zeroc.com/display/IceMatlab/Optional+Data+Members
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Value+Factories
https://doc.zeroc.com/display/IceMatlab/Ruby+Mapping+for+Operations
https://doc.zeroc.com/display/IceMatlab/Code+Generation+in+Ruby

	Ruby Mapping for Classes

