
Command-Line Parsing and Initialization

On this page:

Parsing Command Line Options
The Ice.ProgramName Property

Parsing Command Line Options
When you by calling , you can pass the application's arguments to the initialization call.initialize the Ice run time initialize

In most language mappings, this argument vector is an parameter. In C++, for example, is passed as a to an :in-out argc reference int

C++11

std::shared_ptr<Ice::Communicator> initialize(int& argc, const char* argv[], ...other parameters...);

C++98

Ice::CommunicatorPtr initialize(int& argc, const char* argv[], ...other parameters...);

initialize parses the argument vector and initializes the new communicator's properties accordingly. It also removes all arguments that set Ice
properties from the provided argument vector. For example, assume we invoke a C++ server as:

./server --myoption --Ice.Config=config -x a --Ice.Trace.Network=3 -y opt file

Initially, has the value , and has ten elements: the first nine elements contain the program name and the arguments, and the final element, argc 9 argv ar
, contains a null pointer (as required by the C++ standard). When returns, has the value and contains the gv[argc] Ice::initialize argc 7 argv

following elements:

./server
--myoption
-x
a
-y
opt
file
0 # Terminating null pointer

This means that you should initialize the Ice run time before you parse the command line for your application-specific arguments. That way, the Ice-related
options are stripped from the argument vector for you so you do not need to explicitly skip them.

initialize provides the same argument-property parsing and stripping in all language mappings.

If you use the , the member function or method is passed an argument vector with the Ice-related options already stripped. Application helper class run
The same is true for the member function or method called by the helper class.runWithSession Glacier2::Application

Back to Top ^

The PropertyIce.ProgramName
For C++, Objective-C, Python, and Ruby, sets the property to the name of the current program (). In C#, initialize Ice.ProgramName argv[0] init

 sets to the value of . Your application code can ialize Ice.ProgramName System.AppDomain.CurrentDomain.FriendlyName read this property
and use it for activities such as logging diagnostic or trace messages.

Even though is initialized for you, you can still override its value from a or by setting the property on the command Ice.ProgramName configuration file
line.

For Java, the program name is not supplied as part of the argument vector — if you want to use the property in your application, you Ice.ProgramName
must set it before initializing a communicator.

https://doc.zeroc.com/display/IceMatlab/Alternate+Property+Stores
https://doc.zeroc.com/display/IceMatlab/The+Properties+Interface
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Application+Helper+Class
https://doc.zeroc.com/display/IceMatlab/Glacier2+Application+Class
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.ProgramName
https://doc.zeroc.com/display/IceMatlab/Reading+Properties
https://doc.zeroc.com/display/IceMatlab/Using+Configuration+Files

Back to Top ^

See Also

Using Configuration Files
Reading Properties
Communicator Initialization
Glacier2 Application Class

https://doc.zeroc.com/display/IceMatlab/Using+Configuration+Files
https://doc.zeroc.com/display/IceMatlab/Reading+Properties
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Glacier2+Application+Class
https://doc.zeroc.com/display/IceMatlab/Alternate+Property+Stores
https://doc.zeroc.com/display/IceMatlab/The+Properties+Interface

	Command-Line Parsing and Initialization

