
Plug-in API

On this page:

The Plugin Interface
C++ Plug-in Factory
Java Plug-in Factory
C# Plug-in Factory

The InterfacePlugin
The plug-in facility defines a Slice interface that all plug-ins must implement:local

Slice

module Ice
{
 local interface Plugin
 {
 void initialize();
 void destroy();
 }
}

The lifecycle of an Ice plug-in is structured to accommodate dependencies between plug-ins, such as when a logger plug-in needs to use IceSSL for its
logging activities. Consequently, a plug-in object's lifecycle consists of four phases:

Construction
The Ice run time uses a language-specific factory API for instantiating plug-ins. During construction, a plug-in can acquire resources but must not
spawn new threads or perform activities that depend on other plug-ins.

Initialization
After all plug-ins have been constructed, the Ice run time invokes on each plug-in. The order in which plug-ins are initialized is initialize
undefined by default but can be using a configuration property. If a plug-in has a dependency on another plug-in, you must configure customized
the Ice run time so that initialization occurs in the proper order. In this phase it is safe for a plug-in to spawn new threads; it is also safe for a plug-
in to interact with other plug-ins and use their services, as long as those plug-ins have already been initialized. If raises an initialize
exception, the Ice run time invokes on all plug-ins that were successfully initialized (in the reverse order of initialization) and raises the destroy
original exception to the application.

Active
The active phase spans the time between initialization and destruction. Plug-ins must be designed to operate safely in the context of multiple
threads.

Destruction
The Ice run time invokes on each plug-in in the reverse order of initialization.destroy

This lifecycle is repeated for each new communicator that an application creates and destroys.

Back to Top ^

C++ Plug-in Factory
In C++, a plug-in factory is a function with C linkage and the following signature:

C++11

A plug-in's implementation must not make remote invocations.destroy

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Local+Types
https://doc.zeroc.com/display/IceMatlab/Advanced+Plug-in+Topics

C++

extern "C"
{
 Ice::Plugin* functionName(const std::shared_ptr<Ice::Communicator>& communicator,
 const std::string& name,
 const Ice::StringSeq& args)
 {
 ...
 }
}

C++98

C++

extern "C"
{
 Ice::Plugin* functionName(const Ice::CommunicatorPtr& communicator,
 const std::string& name,
 const Ice::StringSeq& args)
 {
 ...
 }
}

You can choose any name for the factory function.

Since the function uses C linkage, it must return the plug-in object as a regular C++ pointer and not as a smart pointer. Furthermore, the function must not
raise C++ exceptions; if an error occurs, the function must return zero. The arguments to the function consist of the communicator that is in the process of
being initialized, the name assigned to the plug-in, and any arguments that were specified in the .plug-in's configuration

If your plug-in and the associated factory function are packaged in a shared library or DLL loaded at run time, you need to export this function from the
shared library or DLL. We provide the macro for this purpose:ICE_DECLSPEC_EXPORT

C++

#if defined(_MSC_VER)
define ICE_DECLSPEC_EXPORT __declspec(dllexport)
...
#elif defined(__GNUC__) || defined(__clang__)
define ICE_DECLSPEC_EXPORT __attribute__((visibility ("default")))
...

Simply add the definition of your plug-in factory: to ICE_DECLSPEC_EXPORT

C++11

C++

extern "C"
{
 ICE_DECLSPEC_EXPORT Ice::Plugin* functionName(const std::shared_ptr<Ice::Communicator>& communicator,
 const std::string& name,
 const Ice::StringSeq& args)
 {
 ...
 }
}

C++98

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

C++

extern "C"
{
 ICE_DECLSPEC_EXPORT Ice::Plugin* functionName(const Ice::CommunicatorPtr& communicator,
 const std::string& name,
 const Ice::StringSeq& args)
 {
 ...
 }
}

If you don't want to rely on the dynamic loading of your plug-in shared library or DLL at run time, or if your plug-in is packaged in a static library, you can
also link the plug-in into your application and call Ice::registerPluginFactory in your main application's code to register the plug-in before you

initialize Ice communicators. For example:

C++

MyApp::MyApp()
{
 // Load/link the "IceSSL" plug-in before communicator initialization

 Ice::registerPluginFactory("IceSSL", createIceSSL, false);
}

The function registers the plug-in's factory function with the Ice run time. It returns , and accepts the following registerPluginFactory void
parameters:

const string&
The name of the plug-in.
PLUGIN_FACTORY
A pointer to the plug-in factory function.
bool
When , the plug-in is always loaded (created) during communicator initialization, even if is not set. When , the true Ice.Plugin.name false
plug-in is loaded (created) during communication initialization only if is set to a non-empty value (e.g.: Ice.Plugin.name Ice.Plugin.

).IceSSL=1

Back to Top ^

Java Plug-in Factory
In Java, a plug-in factory must implement the interface:PluginFactory

Java

package com.zeroc.Ice;

public interface PluginFactory
{
 Plugin create(Communicator communicator, String name, String[] args);
}

Java Compat

package Ice;

public interface PluginFactory
{
 Plugin create(Communicator communicator, String name, String[] args);
}

The arguments to the method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any create
arguments that were specified in the .plug-in's configuration

https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

The method can return to indicate that a general error occurred, or it can raise to provide more create null PluginInitializationException
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of .PluginInitializationException

Back to Top ^

C# Plug-in Factory
In .NET, a plug-in factory must implement the interface:Ice.PluginFactory

C#

namespace Ice
{
 public interface PluginFactory
 {
 Plugin create(Communicator communicator, string name, string[] args);
 }
}

The arguments to the method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any create
arguments that were specified in the .plug-in's configuration

The method can return to indicate that a general error occurred, or it can raise to provide more create null PluginInitializationException
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of .PluginInitializationException

Back to Top ^

See Also

Plug-in Configuration
Advanced Plug-in Topics

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Advanced+Plug-in+Topics
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

	Plug-in API

