Plug-in API
-

Previous

On this page:

The Plugin Interface
C++ Plug-in Factory
Java Plug-in Factory
C# Plug-in Factory

The Pl ugi n Interface

The plug-in facility defines a local Slice interface that all plug-ins must implement:

Slice

nodul e I ce

{
local interface Plugin
{
void initialize();
voi d destroy();
}
}

The lifecycle of an Ice plug-in is structured to accommodate dependencies between plug-ins, such as when a logger plug-in needs to use IceSSL for its
logging activities. Consequently, a plug-in object's lifecycle consists of four phases:

® Construction
The Ice run time uses a language-specific factory API for instantiating plug-ins. During construction, a plug-in can acquire resources but must not
spawn new threads or perform activities that depend on other plug-ins.

® |nitialization
After all plug-ins have been constructed, the Ice run time invokes i ni ti al i ze on each plug-in. The order in which plug-ins are initialized is
undefined by default but can be customized using a configuration property. If a plug-in has a dependency on another plug-in, you must configure
the Ice run time so that initialization occurs in the proper order. In this phase it is safe for a plug-in to spawn new threads; it is also safe for a plug-
in to interact with other plug-ins and use their services, as long as those plug-ins have already been initialized. If i ni ti al i ze raises an
exception, the Ice run time invokes dest r oy on all plug-ins that were successfully initialized (in the reverse order of initialization) and raises the
original exception to the application.

® Active
The active phase spans the time between initialization and destruction. Plug-ins must be designed to operate safely in the context of multiple
threads.

® Destruction
The Ice run time invokes dest r oy on each plug-in in the reverse order of initialization.

1 Aplug-in's dest r oy implementation must not make remote invocations.

This lifecycle is repeated for each new communicator that an application creates and destroys.

Back to Top »

C++ Plug-in Factory

In C++, a plug-in factory is a function with C linkage and the following signature:

C++11

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Local+Types
https://doc.zeroc.com/display/IceMatlab/Advanced+Plug-in+Topics

C++

extern "C'
{
I ce::Plugin* functionNane(const std::shared_ptr<l|ce:: Conmmuni cat or >& communi cat or,
const std::string& nane,
const lce::StringSeq& args)

{
}
}
C++98
C++
extern "C'
{

I ce::Plugin* functionNane(const |ce:: Conmuni cat or Pt r& communi cat or,
const std::string& nane,
const lce::StringSeq& args)

{

}

}

You can choose any name for the factory function.

Since the function uses C linkage, it must return the plug-in object as a regular C++ pointer and not as a smart pointer. Furthermore, the function must not
raise C++ exceptions; if an error occurs, the function must return zero. The arguments to the function consist of the communicator that is in the process of
being initialized, the name assigned to the plug-in, and any arguments that were specified in the plug-in's configuration.

If your plug-in and the associated factory function are packaged in a shared library or DLL loaded at run time, you need to export this function from the
shared library or DLL. We provide the macro | CE_DECLSPEC_EXPORT for this purpose:

C++

#i f defined(_MSC_VER)
define | CE_DECLSPEC EXPORT __decl spec(dl | export)

#elif defined(__GNUC__) || defined(__clang_)
define | CE_DECLSPEC EXPORT __attribute_ ((visibility ("default")))

Simply add | CE_DECLSPEC_EXPORT to the definition of your plug-in factory:
C++11

C++

extern "C'
{
| CE_DECLSPEC_EXPORT | ce: : Plugi n* functionNanme(const std::shared_ptr<Ice:: Conmuni cat or >& conmuni cat or,
const std::string& nane,
const lce::StringSeq& args)

C++98

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

C++

extern "C'

{
| CE_DECLSPEC_EXPORT | ce: : Pl ugi n* functionName(const |ce:: Communi cat or Pt r & communi cat or,
const std::string& nane,
const lce::StringSeq& args)

If you don't want to rely on the dynamic loading of your plug-in shared library or DLL at run time, or if your plug-in is packaged in a static library, you can
also link the plug-in into your application and call | ce: : r egi st er Pl ugi nFact or y in your main application's code to register the plug-in before you
initialize Ice communicators. For example:

C++

MyApp: : MyApp()
{

/1 Load/link the "lIceSSL" plug-in before communicator initialization

Ice::registerPluginFactory("lceSSL", createlceSSL, false);

The r egi st er Pl ugi nFact ory function registers the plug-in's factory function with the Ice run time. It returns voi d, and accepts the following
parameters:

® const string&
The name of the plug-in.
® PLUG N_FACTORY
A pointer to the plug-in factory function.
® bool
When t r ue, the plug-in is always loaded (created) during communicator initialization, even if | ce. Pl ugi n. nane is not set. When f al se, the
plug-in is loaded (created) during communication initialization only if | ce. Pl ugi n. nane is set to a non-empty value (e.g.: | ce. Pl ugi n.
| ceSSL=1).

Back to Top

Java Plug-in Factory

In Java, a plug-in factory must implement the Pl ugi nFact ory interface:

Java

package com zeroc. I ce;

public interface PluginFactory

{

Pl ugi n create(Comuni cator communi cator, String nane, String[] args);

}

Java Compat
package Ice;

public interface PluginFactory

{

Pl ugi n create(Conmmuni cator communi cator, String name, String[] args);

}

The arguments to the cr eat e method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any
arguments that were specified in the plug-in's configuration.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

The cr eat e method can return nul | to indicate that a general error occurred, or it can raise Pl ugi nl ni ti al i zati onExcepti on to provide more
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of Pl ugi nl niti al i zati onExcepti on.

Back to Top

C# Plug-in Factory

In .NET, a plug-in factory must implement the | ce. Pl ugi nFact ory interface:

C#

nanespace |ce

{
public interface PluginFactory
{
Pl ugi n creat e(Conmmuni cat or communi cator, string name, string[] args);
}
}

The arguments to the cr eat e method consist of the communicator that is in the process of being initialized, the name assigned to the plug-in, and any
arguments that were specified in the plug-in's configuration.

The cr eat e method can return nul | to indicate that a general error occurred, or it can raise Pl ugi nl ni ti al i zati onExcepti on to provide more
detailed information. If any other exception is raised, the Ice run time wraps it inside an instance of Pl ugi nl ni ti al i zati onExcepti on.

Back to Top »

See Also

® Plug-in Configuration
® Advanced Plug-in Topics

<= =»

Previous MNext

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/Advanced+Plug-in+Topics
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

	Plug-in API

