
Advanced Plug-in Topics

This page discusses additional aspects of the Ice plug-in facility that may be of use to applications with special requirements.

On this page:

Plug-in Dependencies
The Plug-in Manager
Delayed Plug-in Initialization

Plug-in Dependencies
If a plug-in has a dependency on another plug-in, you must ensure that Ice initializes the plug-ins in the proper order. Suppose that a custom plug-in
depends on ; for example, it may need to make secure invocations on another server. We start with the following C++ configuration:IceSSL

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyPlugin=MyPlugin:createMyPlugin

The problem with this configuration is that it does not specify the order in which the plug-ins should be loaded and initialized. If the Ice run time happens to
initialize first, the plug-in's method will fail if it attempts to use the services of the uninitialized IceSSL plug-in.MyPlugin initialize

To remedy the situation, we need to add one more property:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyPlugin=MyPlugin:createMyPlugin
Ice.PluginLoadOrder=IceSSL, MyPlugin

Using the property we can guarantee that the plug-ins are loaded in the correct order.Ice.PluginLoadOrder

Back to Top ^

The Plug-in Manager
PluginManager is the name of an internal Ice object that is responsible for managing all aspects of Ice plug-ins. This object supports a Slice local
interface of the same name, and an application can obtain a reference to this object using the following communicator operation:

Slice

module Ice
{
 local interface Communicator
 {
 PluginManager getPluginManager();
 // ...
 }
}

The interface offers three operations:PluginManager

Plug-ins added manually via the are appended to the end of the plug-in list, in order of addition. The last plug-in added is the plug-in manager
first to be destroyed.

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/display/IceMatlab/Ice.PluginLoadOrder
https://doc.zeroc.com/display/IceMatlab/Local+Types

Slice

module Ice
{
 local interface PluginManager
 {
 void initializePlugins();
 Plugin getPlugin(string name);
 void addPlugin(string name, Plugin pi);
 }
}

The operation is used in special cases when an application needs to manually initialize one or more plug-ins, as discussed in the initializePlugins
next section.

The operation returns a reference to a specific plug-in. The argument must match an installed plug-in, otherwise the operation raises getPlugin name No
. This operation is useful when a plug-in exports an interface that an application can use to query or customize its attributes or tRegisteredException

behavior.

Finally, provides a way for an application to install a plug-in directly, without the use of a configuration property. This plug-in's addPlugin initialize
operation will be invoked if has not yet been called on the plug-in manager. If has already been called initializePlugins initializePlugins
before a plug-in is added, Ice does not invoke on the plug-in, but does invoke during communicator destruction.initialize destroy

Back to Top ^

Delayed Plug-in Initialization
It is sometimes necessary for an application to manually configure a plug-in prior to its initialization. For example, SSL keys are often protected by a
passphrase, but a developer may be understandably reluctant to specify that passphrase in a configuration file because it would be exposed in clear text.
The developer would likely prefer to configure the IceSSL plug-in with a password callback instead; however, this must be done before the plug-in is
initialized and attempts to load the SSL key. The solution is to configure the Ice run time so that it postpones the initialization of its plug-ins:

Ice.InitPlugins=0

When is set to zero, initializing plug-ins becomes the application's responsibility. The example below demonstrates how to perform Ice.InitPlugins
this initialization:

C++11

communicator = ...
auto pm = communicator->getPluginManager();
auto ssl = std::dynamic_pointer_cast<IceSSL::Plugin>(pm->getPlugin("IceSSL"));
ssl->setPasswordPrompt(...);
pm->initializePlugins();

C++98

communicator = ...
Ice::PluginManagerPtr pm = communicator->getPluginManager();
IceSSL::PluginPtr ssl = IceSSL::PluginPtr::dynamicCast(pm->getPlugin("IceSSL"));
ssl->setPasswordPrompt(...);
pm->initializePlugins();

After obtaining the IceSSL plug-in and establishing the password callback, the application invokes on the plug-in manager object to initializePlugins
commence plug-in initialization.

Back to Top ^

See Also

IceSSL
Ice.InitPlugins
Ice.Plugin.*
Ice.PluginLoadOrder

https://doc.zeroc.com/pages/viewpage.action?pageId=18263649
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263649
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/display/IceMatlab/Ice.PluginLoadOrder

https://doc.zeroc.com/display/IceMatlab/Plug-in+Configuration

	Advanced Plug-in Topics

