Obtaining Proxies
%

Previous

This page describes the ways an application can obtain a proxy.

On this page:

Obtaining a Proxy from a String
Obtaining a Proxy from Properties
Obtaining a Proxy using Factory Methods
Obtaining a Proxy by Invoking Operations

Obtaining a Proxy from a String

The communicator operation st ri ngToPr oxy creates a proxy from its stringified representation, as shown in the following C++ example:

C++11

auto p = conmuni cator->stringToProxy("ident:tcp -p 5000"); // p is a std::shared_ptr<lce:: CbjectPrx>

C++98

Ice::bjectPrx p = comunicator->stringToProxy("ident:tcp -p 5000");

Back to Top »

Obtaining a Proxy from Properties

Rather than hard-coding a stringified proxy as the previous example demonstrated, an application can gain more flexibility by externalizing the proxy in a
configuration property. For example, we can define a property that contains our stringified proxy as follows:

My App. Proxy=ident:tcp -p 5000

We can use the communicator operation pr oper t yToPr oxy to convert the property's value into a proxy, as shown below in Java:

Java

com zeroc. | ce. ObjectPrx p = communi cat or. propertyToProxy(" M/App. Proxy");

Java Compat
I ce. Object Prx p = commruni cator. propertyToProxy(" M/App. Proxy");

As an added convenience, pr oper t yToPr oxy allows you to define subordinate properties that configure the proxy's local settings. The properties below
demonstrate this feature:

M/ App. Proxy=ident:tcp -p 5000
M/ App. Proxy. Pref er Secur e=1
MyApp. Proxy. Endpoi nt Sel ecti on=Cr der ed

These additional properties simplify the task of customizing a proxy (as you can with proxy methods) without the need to change the application's code.
The properties shown above are equivalent to the following statements:

Java

com zeroc. |l ce. CbjectPrx p = conmuni cator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpoint Sel ecti on(com zeroc. | ce. Endpoi nt Sel ecti onType. Or dered);


https://doc.zeroc.com/display/IceMatlab/Proxies
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

Java Compat

Ice.wjectPrx p = comuni cator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpoint Sel ection(lce. Endpoi nt Sel ecti onType. O der ed);

The list of supported proxy properties includes the most commonly-used proxy settings. The communicator prints a warning by default if it does not
recognize a subordinate property. You can disable this warning using the property | ce. War n. UnknownPr oper ti es.

Note that proxy properties can themselves have proxy properties. For example, the following sets the Pr ef er Secur e property on the default locator's
router:

I ce. Defaul t. Locator. Rout er. PreferSecure=1

Back to Top *

Obtaining a Proxy using Factory Methods

Proxy factory methods allow you to modify aspects of an existing proxy. Since proxies are immutable, factory methods always return a new proxy if the
desired modification differs from the proxy's current configuration. Consider the following C# example:

C#

Ice.ObjectPrx p = communicator.stringToProxy("...");
p = p.ice_oneway();

i ce_oneway is considered a factory method because it returns a proxy configured to use oneway invocations. If the original proxy uses a different
invocation mode, the return value of i ce_oneway is a new proxy object.

The checkedCast and uncheckedCast methods can also be considered factory methods because they return new proxies that are narrowed to a
particular Slice interface. A call to checkedCast or uncheckedCast typically follows the use of other factory methods, as shown below:

C#
Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx |l oc = Ice.LocatorPrxHel per.checkedCast (p.ice_secure(true));

Note however that, once a proxy has been narrowed to a Slice interface, it is not normally necessary to perform another down-cast after using a factory
method. For example, we can rewrite this example as follows:

C#
Ice.ObjectPrx p = communicator.stringToProxy("...");
I ce.LocatorPrx | oc = Ice.LocatorPrxHel per.checkedCast (p);

loc = (lce.LocatorPrx)p.ice_secure(true);

A language-specific cast may be necessary, as shown here for C#, because the factory methods are declared to return the type Obj ect Pr x, but the proxy
object itself retains its narrowed type. The only exceptions are the factory methods i ce_f acet andi ce_i denti ty. Calls to either of these methods may
produce a proxy for an object of an unrelated type, therefore they return a base proxy that you must subsequently down-cast to an appropriate type.

Back to Top

Obtaining a Proxy by Invoking Operations

An application can also obtain a proxy as the result of an Ice invocation. Consider the following Slice definitions:


https://doc.zeroc.com/display/IceMatlab/Proxy+Properties
https://doc.zeroc.com/pages/viewpage.action?pageId=18263661#Ice.Warn.*-Ice.Warn.UnknownProperties
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

Slice

interface Account { ... }
interface Bank
{
Account* findAccount(string id);
}

Invoking the f i ndAccount operation returns a proxy for an Account object. There is no need to use checkedCast or uncheckedCast on this proxy
because it has already been narrowed to the Account interface. The C++ code below demonstrates how to invoke f i ndAccount :

C++11

st d: : shared_ptr<BankPrx> bank = ...
auto acct = bank->findAccount(id); // acct is a shared_ptr<AccountPrx>

C++98

BankPrx bank = ...
Account Prx acct = bank->findAccount (id);

Of course, the application must have already obtained a proxy for the bank object using one of the techniques shown above.

Back to Top »

See Also

Communicators

Proxy and Endpoint Syntax
Proxy Methods

Proxy Properties
Ice.Warn.*

-

Previous


https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Proxy+Properties
https://doc.zeroc.com/pages/viewpage.action?pageId=18263661
https://doc.zeroc.com/display/IceMatlab/Proxies
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

	Obtaining Proxies

