
Invocation Timeouts

On this page:

Overview of Invocation Timeouts
Configuring the Default Invocation Timeout
Configuring Invocation Timeouts for Proxies
Invocation Timeout Failures

Overview of Invocation Timeouts
Invocation timeouts let an application specify the maximum amount of time it's willing to wait for invocations to complete. If the timeout expires, the
application receives as the result of an invocation. The Ice runtime starts the timer for the invocation timeout after the InvocationTimeoutException
marshalling of the invocation input parameters and before its starts any network activity (connection establishment and sending of the request over the
network connection). For a twoway invocation, it stops the timer as soon as the response is received from the server and before the invocation output
parameters are un-marshalled. For a oneway invocation, it stops the timer as soon as the invocation is sent.

Back to Top ^

Configuring the Default Invocation Timeout
The property establishes the default timeout value for invocations. This property has a default value of , which Ice.Default.InvocationTimeout -1
means invocations do not time out by default. If defined to , invocation timeouts are disabled and the Ice run time behaves like Ice versions < 3.6: it uses -2

 (defined on the endpoints) to wait for the response of the invocation. This setting is provided only for backward compatibility and might connection timeouts
be deprecated in a future Ice major release.

Consider this setting:

Ice.Default.InvocationTimeout=5000

This configuration causes all invocations to time out if they do not complete within five seconds. Generally speaking however, it's unlikely that a single
timeout value will be appropriate for all of the operations that an application invokes. It's more common for applications to configure invocation timeouts on
a per-proxy basis, as we describe in the next section.

Back to Top ^

Configuring Invocation Timeouts for Proxies
You have a couple of options for configuring invocation timeouts at the proxy level:

Use a proxy property
Call ice_invocationTimeout

Assuming you've defined a configuration property containing a proxy that your application reads using , you can statically configure an propertyToProxy
invocation timeout as follows:

Assumes the application calls propertyToProxy("MyProxy")
MyProxy=theIdentity:tcp -p 5000
MyProxy.InvocationTimeout=2500 # 2.5 seconds

Use to detect network failures in a reasonable period of time.connection timeouts

Invocation timeouts were introduced in Ice 3.6. In earlier Ice versions, connection timeouts were also used as invocation timeouts.

https://doc.zeroc.com/display/IceMatlab/Design+Considerations+for+Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.InvocationTimeout
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Obtaining+Proxies
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts

The proxy property specifies the invocation timeout that will be used for all invocations made via the proxy returned by InvocationTimeout propertyT
.oProxy

To configure an invocation timeout at run time, use the factory method to obtain a new proxy with the desired timeout:ice_invocationTimeout

C++11

shared_ptr<Filesystem::FilePrx> myFile = ...;
auto timeoutFile = myFile->ice_invocationTimeout(2500); // 2.5 seconds

C++98

Filesystem::FilePrx myFile = ...;
FileSystem::FilePrx timeoutFile = myFile->ice_invocationTimeout(2500); // 2.5 seconds

Back to Top ^

Invocation Timeout Failures
An application that configures invocation timeouts must be prepared to catch :InvocationTimeoutException

C++11

shared_ptr<Filesystem::FilePrx> myFile = ...;
auto timeoutFile = myFile->ice_invocationTimeout(2500);

try
{
 auto text = timeoutFile->read(); // Read with timeout
}
catch(const Ice::InvocationTimeoutException&)
{
 cerr << "invocation timed out" << endl;
}

auto text = myFile->read(); // Read without timeout

C++98

Filesystem::FilePrx myFile = ...;
FileSystem::FilePrx timeoutFile = myFile->ice_invocationTimeout(2500);

try
{
 Lines text = timeoutFile->read(); // Read with timeout
}
catch(const Ice::InvocationTimeoutException&)
{
 cerr << "invocation timed out" << endl;
}

Lines text = myFile->read(); // Read without timeout

The effects of an invocation timeout are limited to the client; no indication is sent to the server, which may still be busy dispatching the request. The Ice run
time in the client ignores a reply for this request if the server eventually sends one.

Back to Top ^

See Also

Proxy Methods
Proxy Properties
Ice.Default.*
Connection Timeouts

Ice does perform for invocation timeouts.not automatic retries

https://doc.zeroc.com/display/IceMatlab/Proxy+Properties#ProxyProperties-name.InvocationTimeout
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Proxy+Properties
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries

Obtaining Proxies

https://doc.zeroc.com/display/IceMatlab/Obtaining+Proxies
https://doc.zeroc.com/display/IceMatlab/Design+Considerations+for+Request+Contexts
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries

	Invocation Timeouts

