
Automatic Retries

Ice may automatically retry a proxy invocation after a failure. This is a powerful feature that, when used in the proper situations, can significantly improve
the robustness of your application without any additional programming effort. The retry facility is governed by one overriding principle: always respect at-
most-once semantics. dictate that the Ice run time in the client must never retry a failed proxy invocation unless Ice guarantees At-most-once semantics
that the server has not already received the request, or unless the application declares that it is safe for Ice to violate at-most-once semantics for the
request.

To understand the importance of obeying at-most-once semantics, consider the following Slice definition:

Slice

interface Account
{
 long withdraw(long amount);
}

The operation removes funds from an account. If an invocation of fails, automatically retrying the request introduces the risk of a withdraw withdraw
duplicate withdrawal unless Ice is absolutely sure that the server has not already executed the request.

This page examines automatic retries in more detail.

On this page:

Automatic Retries for Request Failures
Automatic Retries for Idempotent Operations
Configuring Automatic Retries

Retry Intervals
Retry Logging

Timeouts and Automatic Retries
Connections and Automatic Retries

Connection Errors
Connection Status

Automatic Retries: Direct Proxy versus Indirect Proxies

Automatic Retries for Request Failures
Ice considers a request to have failed if any of the following conditions are true:

A connection could not be established
A connection was lost before the reply was received
A timeout expired
An exception occurred while sending the request or receiving the reply
An error occurred in the server while dispatching the request that causes the server to return an or UnknownException RequestFailedExcep
tion

Ice must determine the answers to several questions to decide whether to retry a failed request:

1. What kind of error caused the request to fail?

Ice does not bother retrying a request if it knows the same error is going to occur again. For example, Ice never retries an invocation that raises a Marshal
, which indicates that there was a problem while encoding or decoding a message. Retrying such an invocation is unlikely to change the Exception

outcome. It also doesn't retry , if a server didn't respond within the invocation timeout period, it's unlikely that a retry would provide invocation timeouts
better results.

Ice also never retries exceptions that derive from because they indicate a permanent failure. One such subclass is RequestFailedException Operati
, whose occurrence signals a serious problem in the application. For instance, it might mean that the client and server are using onNotExistException

incompatible Slice definitions, or that the client is trying to invoke operations on the wrong object. The exception to this rule is ObjectNotExistException
, which Ice does consider to be worthy of retry if the proxy in question is because it gives an application the ability to transparently migrate an Ice indirect
object.

Ice considers an invocation that results in a user exception to be successful and therefore excludes it from consideration for automatic retries.

https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-At-Most-OnceSemantics
https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-IndirectProxies

In addition to user exceptions and subclasses of , a server can also return an instance of , RequestFailedException UnknownException UnknownLoc
, or to indicate that it encountered an unexpected exception while dispatching the request. These exceptions alException UnknownUserException are

eligible for retry.

2. When did the error occur?

If the error is still a candidate for retry, Ice needs to know whether the server has received the request. Naturally, the Ice run time in the client cannot
possibly know that information until the server confirms it by sending a reply. However, to be conservative Ice assumes that the server has received the
request as soon as Ice has written the protocol message to the client's local transport buffers. If the error occurred before Ice managed to write the entire
complete message, retrying the request would not violate at-most-once semantics.

The Ice run time in the server also has the ability to notify the client that a request was not dispatched and therefore that it is safe for the Ice run time in the
client to retry the request without violating at-most-once semantics. For example, this situation can occur when the server is shutting down while there are
pending requests that have yet to be executed. Sending this notification allows a client to transparently fail over to another server.

3. Does the application require strict adherence to at-most-once semantics for this request?

An application can grant permission for Ice to violate at-most-once semantics for certain Slice operations by marking them as , causing Ice to idempotent
retry a request that otherwise would be ineligible because the server has already received it. We discuss idempotent operations in more detail .below

If Ice determines that an invocation cannot be retried, it raises the exception that caused the request failure to the application. On the other hand, if Ice
does retry the invocation and the subsequent retries also fail, Ice raises the exception to the application. For example, if the first attempt fails with last Conn

 and the retry fails with , the invocation raises to the ectionRefusedException ConnectTimeoutException ConnectTimeoutException
application.

Back to Top ^

Automatic Retries for Idempotent Operations
Annotating a Slice operation with the keyword notifies Ice that it can safely violate at-most-once semantics:idempotent

Slice

interface Account
{
 long withdraw(long amount);
 idempotent long getBalance();
}

Although clearly requires the stricter treatment, there is no harm in automatically retrying the operation even if the server withdraw getBalance
executes the same request more than once.

In general, "read-only" operations are good candidates for the keyword whereas many mutating operations are not. However, the risk of idempotent
duplicate requests is acceptable even for some kinds of mutating operations:

Slice

interface Account
{
 long withdraw(long amount);
 idempotent long getBalance();
 idempotent void changeAddress(string newAddress);
}

Here we have marked as idempotent because executing the request twice has the same effect as executing it only once.changeAddress

The benefit of the keyword and the associated relaxation of retry semantics is that an invocation that otherwise might have raised an idempotent
exception has at least one more chance to succeed. Furthermore, the application does not need to initiate the retry, and in fact the retry activities are
completely transparent: if a subsequent retry succeeds, the application receives its results as if nothing went wrong. The invocation only raises an
exception once Ice has reached its configured retry limits.

Back to Top ^

Configuring Automatic Retries

Retry Intervals

https://doc.zeroc.com/display/IceMatlab/Operations#Operations-IdempotentOperations

The property configures the retry behavior for a communicator and affects invocations on every proxy created by that Ice.RetryIntervals
communicator. (Retry behavior cannot be configured on a per-proxy basis.) The value of this property consists of a series of integers separated by
whitespace. The number of integers determines how many retry attempts Ice makes, and the value of each entry represents a delay in milliseconds. If this
property is not defined, the default behavior is to retry once immediately after the first failure, which is equivalent to the following property definition:

Ice.RetryIntervals=0

You may want a more elaborate configuration for your application, such as a gradual increase in the delay between retries:

Ice.RetryIntervals=0 100 500 1000

With this setting, Ice retries immediately as in the default case. If the first retry attempt also fails, Ice waits 100 milliseconds before trying again, then 500
milliseconds, and finally tries one more time after waiting one second.

In some situations you may need to disable retries completely. For example, an application might implement its own retry logic and therefore require
immediate notification when a failure occurs. Clients that establish a session with a also need to disable retries. To prevent automatic Glacier2 router
retries, use a value of :-1

Ice.RetryIntervals=-1

Back to Top ^

Retry Logging

To monitor Ice's retry activities, configure your program with the property set to a non-zero value:Ice.Trace.Retry

Ice.Trace.Retry=1

When retry tracing is enabled, Ice logs a message each time it attempts a retry; the log message includes a description of the exception that prompted the
retry. Ice also logs a message when it reaches the retry limit.

You can configure Ice to log even more information about retries by setting the property to :2

Ice.Trace.Retry=2

This setting prompts Ice to include additional details about connections and endpoints.

Back to Top ^

Timeouts and Automatic Retries
Ice does not retry an invocation that fails with an . However, an invocation that fails with a can be eligible for retry.invocation timeout connection timeout

If you test connection timeouts (for example, by attempting to connect to an unreachable IP address), you may notice that the is not TimeoutException
raised as quickly as you would expect . Automatic retries are usually the reason for this situation.

For example, suppose a proxy is configured with a ten seconds connection timeout and automatic retries are enabled with the default setting (one
immediate retry). If an invocation on that proxy fails due to a connection timeout and Ice determines that the invocation is eligible for retry (using the criteria
described), Ice immediately tries the invocation again and waits for another connection timeout period to expire before finally raising above TimeoutExcep

. From the application's perspective, the invocation fails after approximately twenty seconds.tion

Consequently, you can compute an approximate worst-case connection timeout value as follows, assuming the proxy has a single endpoint:

T = t * (N + 1) + D

where is the connection timeout value, is the number of retry intervals, and is the sum of the retry intervals (the total delay between retries). Consider t N D
our example again:

Ice.RetryIntervals=0 10000 20000 30000

https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.RetryIntervals
https://doc.zeroc.com/display/IceMatlab/Getting+Started+with+Glacier2#GettingStartedwithGlacier2-ConfiguringaGlacier2Client
https://doc.zeroc.com/pages/viewpage.action?pageId=18263659#Ice.Trace.*-Ice.Trace.Retry
https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts

Using this configuration with a ten second connection timeout, our approximate worst-case timeout is seconds.10 * 5 + 60 = 110

Back to Top ^

Connections and Automatic Retries
The behavior of automatic retries is intimately tied to the presence (and absence) of connections. This section describes the errors that cause Ice to close
connections, and provides more details about how connections influence retries.

Connection Errors

Ice automatically closes a connection in response to certain fatal error conditions. Of these, the one that is the most likely to affect Ice applications is a conn
. Other errors that prompt Ice to close a connection include the following:ection timeout

a socket failure while performing I/O on the connection
receiving an improperly formatted message
dispatching an operation to a Java servant raises or OutOfMemoryError AssertionError

When Ice closes a connection in response to one of these errors, all other outstanding requests on the same connection also fail and may be retried if
eligible.

Back to Top ^

Connection Status

One factor that influences retry behavior is the status of the connection on which the failed request was attempted. If the failure caused Ice to close the
connection (as discussed in the previous section), or if the request failed because Ice could not , Ice must try to obtain another establish a connection
connection before it can retry the request.

It is also important to understand that Ice may not retry the invocation on the original endpoint even if the connection that was used for the initial request
. The retry behavior in this case depends on several criteria:remains open

whether the proxy caches its connection
whether the proxy contains multiple endpoints
whether other connections exist to any of the proxy's endpoints
the proxy's configured endpoint selection type

Generally speaking, you must configure your application carefully if you need fine-grained control over Ice's retry behavior.

Automatic Retries: Direct Proxy versus Indirect Proxies
With a direct proxy, Ice tries to establish a connection using each suitable endpoint of the proxy, and, if this fails, Ice retries these connection attempts (Ice
retries once immediately with the default retry configuration).

With an indirect proxy, the retry algorithm is a little bit different:

Ice first attempts to establish a connection using the endpoints found in its locator cache, with one attempt for each suitable endpoint.
if this fails, Ice refreshes its locator cache and tries to establish a connection using the refreshed endpoints (this new attempt with just-refreshed
endpoints does not count as a retry).
if all these attempts still fail, Ice refreshes its locator cache again and tries to establish a connection to the re-refreshed endpoints, which
represents retry attempt number 1

Back to Top ^

See Also

Terminology
Operations
Invocation Timeouts
Connection Timeouts
Connection Establishment
Getting Started with Glacier2

https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment#ConnectionEstablishment-cache
https://doc.zeroc.com/display/IceMatlab/Proxy+Endpoints
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment#ConnectionEstablishment-endpoint
https://doc.zeroc.com/display/IceMatlab/Terminology
https://doc.zeroc.com/display/IceMatlab/Operations
https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Getting+Started+with+Glacier2
https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations

	Automatic Retries

