
Oneway Invocations

On this page:

Design Considerations for Oneway Invocations
Creating Oneway Proxies

Design Considerations for Oneway Invocations
A is sent on the client side by writing the request to the client's local transport buffers; the invocation completes and returns control to oneway invocation
the application code as soon as it has been accepted by the local transport. Of course, this means that a oneway invocation is unreliable: it may never be
sent (for example, because of a network failure) or it may not be accepted in the server (for example, because the target object does not exist).

This is an issue in particular if you use (ACM): if a server closes a connection at the wrong moment, it's possible for the Active Connection Management
client to lose already-buffered oneway requests. If your client uses oneway (or) requests, we recommend that you either disable ACM for batched oneway
the server side, or enable ACM heartbeats in the client to ensure the connection remains active. In addition, if clients use oneway requests and your
application initiates server shutdown, it is the responsibility of your application to ensure either that it can cope with the potential loss of buffered oneway
requests, or that it does not shut down the server at the wrong moment (while clients still have oneway requests that are buffered, but not yet sent).

If anything goes wrong with a oneway request, the client-side application code does not receive any notification of the failure; the only errors that are
reported to the client are local errors that occur on the client side during call invocation (such as failure to establish a connection, for example).

As a consequence of oneway invocation, if you call on a oneway proxy, successful completion does indicate that the target object exists ice_ping not
and could successfully be contacted — you will receive an exception only if something goes wrong on the client side, but not if something goes wrong on
the server side. Therefore, if you want to use with a oneway proxy and be certain that the target object exists and can successfully be ice_ping
contacted, you must first convert the oneway proxy into a twoway proxy. For example, in C++:

C++11

shared_ptr<SomeObjectPrx> onewayPrx = ...; // Get a oneway proxy

try
{
 onewayPrx->ice_twoway()->ice_ping();
}
catch(const Ice::Exception&)
{
 cerr << "object not reachable" << endl;
}

C++98

SomeObjectPrx onewayPrx = ...; // Get a oneway proxy

try
{
 onewayPrx->ice_twoway()->ice_ping();
}
catch(const Ice::Exception&)
{
 cerr << "object not reachable" << endl;
}

Oneway invocations are received and processed on the server side like any other incoming request. If necessary, a server can distinguish a oneway
invocation by examining the member of : a non-zero value denotes a twoway request, whereas a value of zero indicates a requestId Ice::Current
oneway request.

Oneway invocations do not incur any return traffic from the server to the client: the server never sends a in response to a oneway reply message
invocation. This means that oneway invocations can result in large efficiency gains, especially for large numbers of small messages, because the client
does not have to wait for the reply to each message to arrive before it can send the next message.

In order to be able to invoke an operation as oneway, two conditions must be met:

The operation must have a return type, must not have any out-parameters, and must not have an exception specification. void

This requirement reflects the fact that the server does not send a reply for a oneway invocation to the client: without such a reply, there is no way

https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-OnewayMethodInvocation
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Operations+on+Object#OperationsonObject-ice_ping
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol

to return any values or exceptions to the client. If you attempt to invoke an operation that returns values to the client as a oneway operation, the
Ice run time throws a (for asynchronous invocations with the C++98 and Java-Compat mappings, TwowayOnlyException IceUtil::

 and are raised instead respectively).IllegalArgumentException java.lang.IllegalArgumentException

The proxy on which the operation is invoked must support a stream-oriented transport (such as TCP or SSL).

Oneway invocations require a stream-oriented transport. (To get something like a oneway invocation for datagram transports, you need to use a d
.) If you attempt to create a oneway proxy for an object that does not offer a stream-oriented transport, the Ice run time throws atagram invocation

a .NoEndpointException

Despite their theoretical unreliablity, in practice, oneway invocations are reliable (but not infallible): they are sent via a stream-oriented transport, so they [1]
cannot get lost except when the connection is or fails entirely. In particular, the transport uses its usual flow control, so the client cannot shutting down
overrun the server with messages. On the client-side, the Ice run time will block if the client's transport buffers fill up, so the client-side application code
cannot overrun its local transport.

Consequently, oneway invocations normally do not block the client-side application code and return immediately, provided that the client does not
consistently generate messages faster than the server can process them. If the rate at which the client invokes operations exceeds the rate at which the
server can process them, the client-side application code will eventually block in an operation invocation until sufficient room is available in the client's
transport buffers to accept the invocation. If your application requires that oneway requests never block the calling thread, you can use asynchronous
oneway invocations instead.

Regardless of whether the client exceeds the rate at which the server can process incoming oneway invocations, the execution of oneway invocations in
the server proceeds asynchronously: the client's invocation completes before the message even arrives at the server.

One thing you need to keep in mind about oneway invocations is that they may appear to be reordered in the server: because oneway invocations are sent
via a stream-oriented transport, they are guaranteed to be received in the order in which they were sent. However, the server's may dispatch thread pool
each invocation in its own thread; because threads are scheduled preemptively, this may cause an invocation sent later by the client to be dispatched and
executed before an invocation that was sent earlier. If oneway requests must be dispatched in order, you can use one of the serialization techniques
described in .Thread Pool Design Considerations

For these reasons, oneway invocations are usually best suited to simple updates that are otherwise stateless (that is, do not depend on the surrounding
context or the state established by previous invocations).

Back to Top ^

Creating Oneway Proxies
Ice selects between twoway, oneway, and via the proxy that is used to invoke the operation. By default, all proxies are created as datagram invocations
twoway proxies. To invoke an operation as oneway, you must create a new proxy configured specifically for oneway invocations. The ice_oneway factory

 is provided for this purpose. The Slice definition of would look as follows:method ice_oneway

Slice

Object* ice_oneway();

We can call to create a oneway proxy and then use the proxy to invoke an operation as follows:ice_oneway

C++11

auto o = communicator->stringToProxy(/* ... */);

// Get a oneway proxy.
//
auto oneway = o->ice_oneway();

// Down-cast to actual type.
//
auto onewayPerson = Ice::uncheckedCast<PersonPrx>(oneway);

// Invoke an operation as oneway.
//
try
{
 onewayPerson->someOp();
}
catch(const Ice::TwowayOnlyException&)
{
 cerr << "someOp() is not oneway" << endl;
}

C++98

https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Connection+Closure#ConnectionClosure-oneway
https://doc.zeroc.com/display/IceMatlab/The+Ice+Threading+Model
https://doc.zeroc.com/display/IceMatlab/Thread+Pool+Design+Considerations
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a oneway proxy.
//
Ice::ObjectPrx oneway = o->ice_oneway();

// Down-cast to actual type.
//
PersonPrx onewayPerson = PersonPrx::uncheckedCast(oneway);

// Invoke an operation as oneway.
//
try
{
 onewayPerson->someOp();
}
catch(const Ice::TwowayOnlyException&)
{
 cerr << "someOp() is not oneway" << endl;
}

Note that we use an to down-cast the proxy from to : for a oneway proxy, we cannot use a uncheckedCast ObjectPrx PersonPrx checkedCast
because a requires a reply from the server but, of course, a oneway proxy does not permit that reply. If instead you want to use a safe checkedCast
down-cast, you can first down-cast the twoway proxy to the actual object type and then obtain the oneway proxy:

C++11

auto o = communicator->stringToProxy(/* ... */);

// Safe down-cast to actual type.
//
auto person = Ice::checkedCast<PersonPrx>(o);

if(person)
{
 // Get a oneway proxy.
 //
 auto onewayPerson = person->ice_oneway();

 // Invoke an operation as oneway.
 //
 try
 {
 onewayPerson->someOp();
 }
 catch(const Ice::TwowayOnlyException&)
 {
 cerr << "someOp() is not oneway" << endl;
 }
}

C++98

1.

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Safe down-cast to actual type.
//
PersonPrx person = PersonPrx::checkedCast(o);

if(person)
{
 // Get a oneway proxy.
 //
 PersonPrx onewayPerson = person->ice_oneway();

 // Invoke an operation as oneway.
 //
 try
 {
 onewayPerson->someOp();
 }
 catch(const Ice::TwowayOnlyException&)
 {
 cerr << "someOp() is not oneway" << endl;
 }
}

Note that, while the second version of this code is somewhat safer (because it uses a safe down-cast), it is also slower (because the safe down-cast incurs
the cost of an additional twoway message).

Back to Top ^

See Also

Terminology
Active Connection Management
Batched Invocations
The Current Object
The Ice Threading Model
Datagram Invocations
The Ice Protocol

References

Snader, J. C. 2000. . Reading, MA: Addison-Wesley.Effective TCP/IP Programming

https://doc.zeroc.com/display/IceMatlab/Terminology
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/The+Ice+Threading+Model
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
http://amzn.com/0201615894
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations

	Oneway Invocations

