
Datagram Invocations

On this page:

Design Considerations for Datagram Invocations
Creating Datagram Proxies
Using UDP Multicast

Design Considerations for Datagram Invocations
Datagram invocations are the equivalent of for datagram transports. As for oneway invocations, datagram invocations can be sent only oneway invocations
for operations that have a return type and do not have out-parameters or an exception specification. Attempts to use a datagram invocation with an void
operation that does not meet these criteria result in a . In addition, datagram invocations can only be used if the proxy's TwowayOnlyException
endpoints include at least one UDP transport; otherwise, the Ice run time throws a .NoEndpointException

The semantics of datagram invocations are similar to oneway invocations: no return traffic flows from the server to the client and proceed asynchronously
with respect to the client; a datagram invocation completes as soon as the client's transport has accepted the invocation into its buffers. However,
datagram invocations differ in one respect from oneway invocations in that datagram invocations optionally support multicast semantics. Furthermore,
datagram invocations have additional error semantics:

Individual invocations may be lost or received out of order.

On the wire, datagram invocations are sent as true datagrams, that is, individual datagrams may be lost, or arrive at the server out of order. As a
result, not only may operations be dispatched out of order, an individual invocation out of a series of invocations may be lost. (This cannot happen
for oneway invocations because, if a connection fails, invocations are lost once the connection breaks down.)all

UDP packets may be duplicated by the transport.

Because of the nature of UDP routing, it is possible for datagrams to arrive in duplicate at the server. This means that, for datagram invocations,
Ice does guarantee : if UDP datagrams are duplicated, the same invocation may be dispatched more than once in the not at-most-once semantics
server.

UDP packets are limited in size.

The maximum size of an IP datagram is 65,535 bytes. Of that, the IP header consumes 20 bytes, and the UDP header consumes 8 bytes, leaving
65,507 bytes as the maximum payload. If the marshaled form of an invocation, including the Ice exceeds that size, the invocation request header
is lost. (Exceeding the size limit for a UDP datagram is indicated to the application by a .)DatagramLimitException

Because of their unreliable nature, datagram invocations are best suited to simple update messages that are otherwise stateless. In addition, due to the
high probability of loss of datagram invocations over wide area networks, you should restrict use of datagram invocations to local area networks, where
they are less likely to be lost. (Of course, regardless of the probability of loss, you must design your application such that it can tolerate lost or duplicated
messages.)

Back to Top ^

Creating Datagram Proxies
To invoke an operation as datagram, you must create a new proxy configured specifically for datagram invocations. The is ice_datagram factory method
provided for this purpose. The Slice definition of would look as follows:ice_datagram

Slice

Object* ice_datagram();

We can call to create a oneway proxy and then use the proxy to invoke an operation as follows:ice_datagram

C++11

The UDP transport is a built-in transport except when using C++ or Objective-C static library builds. In this case, you need to explicitly register
the UDP plug-in for the transport to be available. See for additional information.Using Plugins with Static Libraries

https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-DatagramInvocations
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-At-Most-OnceSemantics
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Using+Plugins+with+Static+Libraries

auto o = communicator->stringToProxy(/* ... */);

// Get a datagram proxy.
//
shared_ptr<Ice::ObjectPrx> datagram;
try
{
 datagram = o->ice_datagram();
}
catch(const Ice::NoEndpointException&)
{
 cerr << "No endpoint for datagram invocations" << endl;
}

// Down-cast to actual type.
//
auto datagramPerson = Ice::uncheckedCast<PersonPrx>(datagram);

// Invoke an operation as a datagram.
//
try
{
 datagramPerson->someOp();
}
catch(const Ice::TwowayOnlyException&)
{
 cerr << "someOp() is not oneway" << endl;
}

C++98

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a datagram proxy.
//
Ice::ObjectPrx datagram;
try
{
 datagram = o->ice_datagram();
}
catch(const Ice::NoEndpointException&)
{
 cerr << "No endpoint for datagram invocations" << endl;
}

// Down-cast to actual type.
//
PersonPrx datagramPerson = PersonPrx::uncheckedCast(datagram);

// Invoke an operation as a datagram.
//
try
{
 datagramPerson->someOp();
}
catch(const Ice::TwowayOnlyException&)
{
 cerr << "someOp() is not oneway" << endl;
}

As for the , you can alternatively choose to first do a safe down-cast to the actual type of interface and then obtain the datagram proxy, oneway example
rather than relying on an unsafe down-cast, as shown above. However, doing so may be disadvantageous for two reasons:

Safe down-casts are sent via a stream-oriented transport. This means that using a safe down-cast will result in opening a connection for the sole
purpose of verifying that the target object has the correct type. This is expensive if all the other traffic to the object is sent via datagrams.
If the proxy does not offer a stream-oriented transport, the fails with a , so you can use this approach checkedCast NoEndpointException
only for proxies that offer both a UDP endpoint and a TCP/IP and/or SSL endpoint.

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations

Using UDP Multicast
The UDP transport included in Ice for C++, Java and .NET also supports IP multicast. Assuming it's enabled on your host, using IP multicast in your
application can be as simple as changing the host in the UDP endpoint to an IPv4 or IPv6 address in the multicast range:

Object Adapter endpoint:
Discover.Endpoints=udp -h 239.255.1.1 -p 10000

Corresponding proxy endpoint:
Discover.Proxy=discover:udp -h 239.255.1.1 -p 10000

You can optionally select the network interface to use for multicast endpoints by including the option.--interface

In one respect, using multicast in Ice is no different than using regular datagram invocations; all of the mentioned above still apply. design considerations
However, the fact that there could be any number of listeners (or none at all) adds new possibilities for your application design. The Ice distribution
includes a simple example of a multicast application in demo/Ice/multicast.

Back to Top ^

See Also

Terminology
Oneway Invocations
The Ice Protocol

Consider using the plug-in if your objective in using multicast is the discovery of available servers.IceDiscovery

https://doc.zeroc.com/display/IceMatlab/Proxy+and+Endpoint+Syntax#ProxyandEndpointSyntax-udp
https://doc.zeroc.com/display/IceMatlab/Terminology
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Batched+Invocations
https://doc.zeroc.com/display/IceMatlab/IceDiscovery

	Datagram Invocations

