
Batched Invocations

Oneway and invocations are normally sent as individual messages, that is, the Ice run time sends the oneway or datagram invocation to the datagram
server immediately, as soon as the client makes the call. If a client sends a number of oneway or datagram invocations in succession, the client-side run
time traps into the OS kernel for each message, which is expensive. In addition, each message is sent with its own , that is, for messagemessage header N
s, the bandwidth for message headers is consumed. In situations where a client sends a number of oneway or datagram invocations, the additional N
overhead can be considerable.

To avoid the overhead of sending many small messages, you can send oneway and datagram invocations in a batch: instead of being sent as a separate
message, a batch invocation is placed into a client-side buffer by the Ice run time. Successive batch invocations are added to the buffer and accumulated
on the client side until they are flushed, either explicitly by the client or automatically by the Ice run time.

On this page:

Proxy Methods for Batched Invocations
Automatically Flushing Batched Invocations
Batched Invocations for Fixed Proxies
Considerations for Batched Datagrams
Compressing Batched Invocations
Active Connection Management and Batched Invocations
Batched Invocation Interceptors

Proxy Methods for Batched Invocations
Several support the use of batched invocations. In Slice, these methods would look as follows:proxy methods

Slice

Object* ice_batchOneway();
Object* ice_batchDatagram();
void ice_flushBatchRequests();

The and methods create a new proxy configured for batch invocations. Once you obtain a batch proxy, ice_batchOneway ice_batchDatagram
messages sent via that proxy are buffered by the proxy instead of being sent immediately. Once the client has invoked one or more operations on a batch
proxy, it can call to explicitly flush the batched invocations. This causes the batched messages to be sent "in bulk", ice_flushBatchRequests
preceded by a single message header. On the server side, batched messages are dispatched by a single thread, in the order in which they were written
into the batch. This means that messages from a single batch cannot appear to be reordered in the server. Moreover, either all messages in a batch are
delivered or none of them. (This is true even for batched datagrams.)

Asynchronous versions of are also available; see the relevant language mapping for more information.ice_flushBatchRequests

Batched invocations are queued by the proxy on which the request was invoked (this is true for all proxies except). It's important to be aware fixed proxies
of this behavior for several reasons:

Batched invocations queued on a proxy will be lost if that proxy is deallocated prior to being flushed
Proxy instances maintain separate queues even if they refer to the same target object
Using proxy may (or may not) create new proxy instances, which affects how batched invocations are queued. Consider this factory methods
example:

C++11

communicator = ...;
auto batch = communicator->stringToProxy("...")->ice_batchOneway(); // Creates a batch oneway proxy
auto secureBatch = batch->ice_secure(); // Might create a new proxy instance
batch->ice_ping();
secureBatch->ice_ping();
batch->ice_flushBatchRequests(); // Might also flush requests on secureBatch

At run time, the and variables might refer to the same proxy instance or two separate proxy instances, depending on the batch secureBatch
original stringified proxy's configuration. As a result, flushing requests using one variable may or may not flush the requests of the other.

Calling on a proxy behaves like a oneway invocation in that take place and an exception is raised if an ice_flushBatchRequests automatic retries
error occurs while establishing a connection or sending the batch message.

https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries

Back to Top ^

Automatically Flushing Batched Invocations
The default behavior of the Ice run time, as governed by the configuration property , automatically flushes batched Ice.BatchAutoFlushSize
invocations as soon as a batched request causes the accumulated message to exceed the specified limit. When this occurs, the Ice run time immediately
flushes the existing batch of requests and begins a new batch with this latest request as its first element.

For batched oneway invocations, the value of specifies the maximum message size in kilobytes; the default value is 1MB. In Ice.BatchAutoFlushSize
the case of batched datagram invocations, the maximum message size is the smaller of the system's maximum size for datagram packets and the value of

.Ice.BatchAutoFlushSize

Automatic flushing is enabled by default as a convenience for clients to ensure a batch never exceeds the configured limit. A client can track batch request
activity, and even implement its own auto-flush logic, by installing an .interceptor

Back to Top ^

Batched Invocations for Fixed Proxies
A is a special form of proxy that an application explicitly creates for use with a specific . Batched invocations on a fixed fixed proxy bidirectional connection
proxy are not queued by the proxy, as is the case for regular proxies, but rather by the connection associated with the fixed proxy. Automatic flushing
continues to work as usual for batched invocations on fixed proxies, and you have three options for manually flushing:

Calling on a fixed proxy flushes all batched requests queued by its connection; this includes batched requests from ice_flushBatchRequests
other fixed proxies that share the same connection
Calling flushes all batched requests queued by the target connectionConnection::flushBatchRequests
Calling flushes all batched requests on all connections associated with the target communicatorCommunicator::flushBatchRequests

The synchronous versions of block the calling thread until the batched requests have been successfully written to the local flushBatchRequests
transport. To avoid the risk of blocking, you must use the asynchronous versions instead (assuming they are supported by your chosen language mapping).

Note the following limitations in case a connection error occurs:

Any requests queued by that connection are lost
Automatic retries are not attempted
The proxy method and will raise an exception, but ice_flushBatchRequests Connection::flushBatchRequests Communicator::

 ignores any errorsflushBatchRequests

The Connection::flushBatchRequests and methods take an argument to Communicator::flushBatchRequests Ice::CompressBatch
specify under which conditions the batch should be compressed or not. The enumeration is shown below:Ice::CompressBatch

slice

["cpp:scoped", "objc:scoped"]
local enum CompressBatch
{
 Yes,
 No,
 BasedOnProxy
}

You can choose to always or never compress the batch with or . The value specifies to compress based on the proxies used to Yes No BasedOnProxy
add requests to the batch. If at least one request was queued with a compressed fixed proxy (a proxy created with or if ice_compress(true) Ice.

 is enabled), the batch will be compressed.Override.Compress

Back to Top ^

Considerations for Batched Datagrams

The receiver's setting for determines the maximum size that the Ice run time will accept for an incoming protocol Ice.MessageSizeMax
message. The sender's setting for must not exceed this limit, otherwise the receiver will silently discard the entire Ice.BatchAutoFlushSize
batch.

Connection::flushBatchRequests and have no effect on batched requests queued by regular Communicator::flushBatchRequests
(non-fixed) proxies.

https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.BatchAutoFlushSize
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.MessageSizeMax

For batched datagram invocations, you need to keep in mind that, if the data for the invocations in a batch substantially exceeds the PDU size of the
network, it becomes increasingly likely for an individual UDP packet to get lost due to fragmentation. In turn, loss of even a single packet causes the entire
batch to be lost. For this reason, batched datagram invocations are most suitable for simple interfaces with a number of operations that each set an
attribute of the target object (or interfaces with similar semantics). Batched oneway invocations do not suffer from this risk because they are sent over
stream-oriented transports, so individual packets cannot be lost.

If automatic flushing is enabled, Ice's default behavior uses the smaller of and to determine the Ice.BatchAutoFlushSize Ice.UDP.SndSize
maximum size for a batch datagram message.

Back to Top ^

Compressing Batched Invocations
Batched invocations are more efficient if you also enable for the transport: many isolated and small messages are unlikely to compress well, compression
whereas batched messages are likely to provide better compression because the compression algorithm has more data to work with.

Back to Top ^

Active Connection Management and Batched Invocations
As for , server-side (ACM) can interfere with batched invocations over TCP or TCP-based transports oneway invocations Active Connection Management
(SSL, WebSocket, etc.). With server-side ACM enabled, it's possible for a server to close the connection at the wrong moment and not process a batch
– with no indication being returned to the client that the batch was lost. We recommend that you either disable ACM for the server side, or enable ACM
heartbeats in the client to ensure the connection remains active.

Back to Top ^

Batched Invocation Interceptors
Batch invocation interceptors allow you to implement your own auto-flush algorithm or receive notification when an auto-flush fails.

C++11

namespace Ice
{
 class BatchRequest
 {
 public:
 virtual void enqueue() const = 0;
 virtual int getSize() const = 0;
 virtual const std::string& getOperation() const = 0;
 virtual const std::shared_ptr<Ice::ObjectPrx>& getProxy() const = 0;
 };

 struct InitializationData
 {
 ...
 std::function<void(const Ice::BatchRequest& req, int count, int size)> batchRequestInterceptor;
 };
}

C++98

Regardless of whether you used batched messages or not, you should enable compression only on lower-speed links. For high-speed LAN
connections, the CPU time spent doing the compression and decompression is typically longer than the time it takes to just transmit the
uncompressed data.

https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.BatchAutoFlushSize
https://doc.zeroc.com/pages/viewpage.action?pageId=18263660#Ice.UDP.*-Ice.UDP.SndSize
https://doc.zeroc.com/display/IceMatlab/Protocol+Compression
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management

namespace Ice
{
 class BatchRequest
 {
 public:
 virtual void enqueue() const = 0;
 virtual int getSize() const = 0;
 virtual const std::string& getOperation() const = 0;
 virtual const Ice::ObjectPrx& getProxy() const = 0;
 };

 class BatchRequestInterceptor : public IceUtil::Shared
 {
 public:
 virtual void enqueue(const BatchRequest&, int, int) = 0;
 };

 struct InitializationData
 {
 ...
 BatchRequestInterceptorPtr batchRequestInterceptor;
 };
}

C#

namespace Ice
{
 public interface BatchRequest
 {
 void enqueue();
 int getSize();
 string getOperation();
 ObjectPrx getProxy();
 }

 public final class InitializationData
 {
 ...
 public System.Action<BatchRequest, int, int> batchRequestInterceptor;
 }
}

Java

package com.zeroc.Ice;

public interface BatchRequest
{
 void enqueue();
 int getSize();
 String getOperation();
 ObjectPrx getProxy();
}

@FunctionalInterface
public interface BatchRequestInterceptor
{
 void enqueue(BatchRequest request, int queueBatchRequestCount, int queueBatchRequestSize);
}

public final class InitializationData
{
 ...
 public BatchRequestInterceptor batchRequestInterceptor;
}

Java Compat

package Ice;

public interface BatchRequest
{
 void enqueue();
 int getSize();
 String getOperation();
 ObjectPrx getProxy();
}
public interface BatchRequestInterceptor
{
 void enqueue(BatchRequest request, int queueBatchRequestCount, int queueBatchRequestSize);
}

public final class InitializationData
{
 ...
 public BatchRequestInterceptor batchRequestInterceptor;
}

ObjC

@protocol ICEBatchRequest <NSObject>
-(void) enqueue;
-(int) getSize;
-(NSString*) getOperation;
-(id<ICEObjectPrx>) getProxy;
@end

@interface ICEInitializationData : NSObject
...
@property(copy, nonatomic) void(^batchRequestInterceptor)(id<ICEBatchRequest>, int, int);
@end

Python

class BatchRequest(object):
 def getSize():
 ...
 def getOperation():
 ...

 def getProxy():
 ...

 def enqueue():
 ...

initData = Ice.InitializationData()
initData.batchRequestInterceptor = lambda req, count, size: ...

You install an interceptor by setting the member of the object that the application constructs when batchRequestInterceptor InitializationData i
. The Ice run time invokes the interceptor for each batch request, passing the following arguments:nitializing a new communicator

req - An object representing the batch request being queued
count - The number of requests currently in the queue
size - The number of bytes consumed by the requests currently in the queue

The request represented by is not included in the and figures.req count size

A batch request is not queued until the interceptor calls . The minimal interceptor implementation is therefore:BatchRequest::enqueue

https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization

C++11

initData.batchRequestInterceptor = [](const Ice::BatchRequest& req, int count, int size)
{
 req.enqueue();
};

A more sophisticated implementation might use its own logic for automatically flushing queued requests:

C++11

int limit = initData.properties->getPropertyAsInt("Ice.BatchAutoFlushSize");
initData.batchRequestInterceptor = [limit](const Ice::BatchRequest& req, int count, int size)
{
 if(size + req.getSize() > limit)
 {
 req.getProxy()->ice_flushBatchRequestsAsync([=](const Ice::Exception& ex) { /* Handle error */ });
 }
 req.enqueue();
};

In this example, the implementation consults the existing Ice property to determine the limit that triggers an automatic flush. Ice.BatchAutoFlushSize
If a flush is necessary, the interceptor can obtain the relevant proxy by calling on the object.getProxy BatchRequest

Specifying your own exception handler when calling gives you the ability to take action if a failure occurs (Ice's default ice_flushBatchRequestsAsync
automatic flushing implementation ignores any errors). Aside from logging a message, your options are somewhat limited because it's not possible for the
interceptor to force a retry.

Back to Top ^

See Also

Oneway Invocations
Datagram Invocations
Communicators
Using Connections
The Ice Protocol
Protocol Compression
Active Connection Management

For datagram proxies, we strongly recommend using a maximum queue size that is smaller than the network MTU to minimize the risk that
datagram fragmentation could cause an entire batch to be lost.

https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/Communicators
https://doc.zeroc.com/display/IceMatlab/Using+Connections
https://doc.zeroc.com/display/IceMatlab/The+Ice+Protocol
https://doc.zeroc.com/display/IceMatlab/Protocol+Compression
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations

	Batched Invocations

