
Registering a Servant Locator

On this page:

Servant Locator Registration
Call Dispatch Semantics for Servant Locators

Servant Locator Registration
An does not automatically know when you create a . Instead, you must explicitly register a servant locator with the object object adapter servant locator
adapter:

Slice

module Ice
{
 local interface ObjectAdapter
 {
 // ...

 void addServantLocator(ServantLocator locator, string category);

 ServantLocator removeServantLocator(string category);

 ServantLocator findServantLocator(string category);

 // ...
 }
}

As you can see, the object adapter allows you to add, remove, and find servant locators. Note that, when you register a servant locator, you must provide
an argument for the parameter. The value of the parameter controls which the servant locator is responsible for: category category object identities
only object identities with a matching member trigger a corresponding call to . An incoming request for which no explicit entry exists in category locate
the and with a category for which no servant locator is registered returns an to the client.active servant map (ASM) ObjectNotExistException

addServantLocator has the following semantics:

You can register exactly one servant locator for a specific category. Attempts to call for the same category more than once addServantLocator
raise an .AlreadyRegisteredException
You can register different servant locators for different categories, or you can register the same single servant locator multiple times (each time for
a different category). In the former case, the category is implicit in the servant locator instance that is called by the Ice run time; in the latter case,
the implementation of can find out which category the incoming request is for by examining the object identity member of the locate Current
object that is passed to .locate
It is legal to register a servant locator for the empty category. Such a servant locator is known as a : if a request comes in default servant locator
for which no entry exists in the ASM, and whose category does not match the category of any other registered servant locator, the Ice run time
calls on the default servant locator.locate

removeServantLocator removes and returns the servant locator for a specific category (including the empty category) with the following semantics:

If no servant locator is registered for the specified category, the operation raises .NotRegisteredException
Once a servant locator is successfully removed for the specified category, the Ice run time guarantees that no new incoming requests for that
category are dispatched to the servant locator.
A call to returns immediately without waiting for the completion of any pending requests on that servant locator; such removeServantLocator
requests still complete normally by calling on the servant locator.finished
Removing a servant locator does not cause Ice to invoke on that servant locator, as is only called when a registered deactivate deactivate
servant locator's object adapter is destroyed.

findServantLocator allows you to retrieve the servant locator for a specific category (including the empty category). If no match is found, the operation
returns null.

Back to Top ^

Call Dispatch Semantics for Servant Locators

https://doc.zeroc.com/display/IceMatlab/Threading+Guarantees+for+Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Object+Adapters
https://doc.zeroc.com/display/IceMatlab/Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Object+Identity
https://doc.zeroc.com/display/IceMatlab/The+Active+Servant+Map
https://doc.zeroc.com/display/IceMatlab/The+Current+Object

1.
2.

3.

4.

5.

6.

The preceding rules may seem complicated, so here is a summary of the actions taken by the Ice run time to locate a servant for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the request (because the request arrives at a specific transport endpoint and,
therefore, identifies a particular object adapter). The incoming request carries an object identity that must be mapped to a servant. To locate a servant, the
Ice run time goes through the following steps, in the order shown:

Look for the identity in the ASM. If the ASM contains an entry, dispatch the request to the corresponding servant.
If the category of the incoming object identity is non-empty, look for a that is registered for that category. If such a default servant default servant
is registered, dispatch the request to that servant.
If the category of the incoming object identity is empty, or no default servant could be found for the category in step 2, look for a default servant
that is registered for the empty category. If such a default servant is registered, dispatch the request to that servant.
If the category of the incoming object identity is non-empty and no servant could be found in the preceding steps, look for a servant locator that is
registered for that category. If such a servant locator is registered, call on the servant locator and, if returns a servant, dispatch locate locate
the request to that servant, followed by a call to ; otherwise, if the call to returns null, raise or finished locate ObjectNotExistException F

 in the client.acetNotExistException
If the category of the incoming object identity is empty, or no servant locator could be found for the category in step 4, look for a default servant
locator (that is, a servant locator that is registered for the empty category). If a default servant locator is registered, dispatch the request as for
step 4.
Raise or in the client. (is raised if the ASM does not ObjectNotExistException FacetNotExistException ObjectNotExistException
contain a servant with the given identity at all, is raised if the ASM contains a servant with a matching identity, but a FacetNotExistException
non-matching .)facet

It is important to keep these call dispatch semantics in mind because they enable a number of powerful implementation techniques. Each technique allows
you to streamline your server implementation and to precisely control the trade-off between performance, memory consumption, and scalability. To
illustrate the possibilities, we will outline a number of the most common implementation techniques.

Back to Top ^

See Also

Object Adapters
Object Identity
The Active Servant Map
Default Servants
Versioning
Servant Locator Example

https://doc.zeroc.com/display/IceMatlab/Default+Servants
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Object+Adapters
https://doc.zeroc.com/display/IceMatlab/Object+Identity
https://doc.zeroc.com/display/IceMatlab/The+Active+Servant+Map
https://doc.zeroc.com/display/IceMatlab/Default+Servants
https://doc.zeroc.com/display/IceMatlab/Versioning
https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Threading+Guarantees+for+Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example

	Registering a Servant Locator

