Using ldentity Categories with Servant Locators
%

Previous

Our simple example always instantiates a servant of type PhoneEnt r yl . In other words, the servant locator implicitly is aware of the type of servant the
incoming request is for. This is not a very realistic assumption for most servers because, usually, a server provides access to objects with several different
interfaces. This poses a problem for our | ocat e implementation: somehow, we need to decide inside | ocat e what type of servant to instantiate. You
have several options for solving this problem:

® Use a separate object adapter for each interface type and use a separate servant locator for each object adapter.
This technique works fine, but has the down-side that each object adapter requires a separate transport endpoint, which is wasteful.
® Mangle a type identifier into the name component of the object identity.

This technique uses part of the object identity to denote what type of object to instantiate. For example, in our file system application, we have
directory and file objects. By convention, we could prepend a 'd' to the identity of every directory and prepend an 'f ' to the identity of every file.
The servant locator then can use the first letter of the identity to decide what type of servant to instantiate:

C++11
C++98

std::shared_ptr<lce:: Qbject>
M/Servant Locator:: |l ocate(const Ice::Current& current, std::shared_ptr<voi d>& cooki e)

{
/'l Get the object identity. (W use the name nmenber
/1 as the database key.)
I
auto nane = c.id.nane;
auto realld = c.id.nanme. substr(1);
try
{
if(name[0] == "'d")
{
/1 The request is for a directory.
I
DirectoryDetails d = DB_|l ookup(realld);
return std:: make_shared<Directoryl>(d);
}
el se
{
/'l The request is for a file.
11
FileDetails d = DB_l ookup(real Id);
return std:: make_shared<Filel >(d);
}
}
cat ch(Dat abaseNot FoundExcept i on&)
{
return O;
}
}

C++98

https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Using+Cookies+with+Servant+Locators
https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Object+Identity

lce::ObjectPtr
M/ Servant Locator: : |l ocate(const Ice::Current& current, Ice::Local ObjectPtr& cookie)
{

/] Get the object identity. (W use the name nenber

/1 as the database key.)

11

std::string name = c.id. naneg;

std::string realld = c.id.nanme. substr(1);

try
{
if(nane[0] == 'd')
{
/1 The request is for a directory.
11
DirectoryDetails d = DB_|l ookup(realld);
return new Directoryl (d);
}
el se
{
/1 The request is for a file.
11
FileDetails d = DB_| ookup(realld);
return new Filel (d);
}
}
cat ch(Dat abaseNot FoundExcepti on&)
{
return O;
}

While this works, it is awkward: not only do we need to parse the name member to work out what type of object to instantiate, but we also need to
modify the implementation of | ocat e whenever we add a new type to our application.

Use the cat egor y member of the object identity to denote the type of servant to instantiate.
This is the recommended approach: for every interface type, we assign a separate identifier as the value of the cat egor y member of the object
identity. (For example, we can use 'd’ for directories and 'f ' for files.) Instead of registering a single servant locator, we create two different

servant locator implementations, one for directories and one for files, and then register each locator for the appropriate category:

C++11

class DirectorylLocator : public Ice:: ServantLocat or

{
public:

virtual std::shared_ptr<ice::Object> |ocate(const Ice::Current& current, std::
shared_ptr<voi d>& cooki e) override
{
/] Code to locate and instantiate a directory here...

}

virtual void finished(const lce::Current& current, const std::shared_ptr<lce:: Qbject>& servant,
const std::shared_ptr<voi d>& cooki e) override

{
}
virtual void deactivate(const std::string& category) override
{
}
}
class FileLocator : public Ice:: ServantLocator
{
public:

virtual std::shared_ptr<ice::Object> |ocate(const Ice::Current& current, std::
shar ed_ptr<voi d>& cooki e) override

/] Code to locate and instantiate a file here...

}

virtual void finished(const lce::Current& current, const std::shared_ptr<Ice:: Object> servant,
const std::shared_ptr<voi d>& cooki e) override

{
}
virtual void deactivate(const std::string& category) override
{
}
I
11

/'l Register two |ocators, one for directories and

/1 one for files.

11

adapt er - >addSer vant Locat or (st d: : mneke_shar ed<Di rect oryLocator>(), "d");
adapt er - >addSer vant Locat or (st d: : nake_shar ed<Fi | eLocator>(), "f");

C++98

class DirectorylLocator : public Ice:: ServantLocat or

{
public:
virtual lce::CbjectPtr |ocate(const Ice::Current& current, |ce::Local ObjectPtr& cookie)
{
/] Code to locate and instantiate a directory here...
}

virtual void finished(const Ice::Current& current, const Ice::CbjectPtr& servant, const lce::
Local Qbj ect Pt r& cooki e)

{
}
virtual void deactivate(const std::string& category)
{
}
I
class FileLocator : public Ice:: ServantLocator
{
public:

virtual lce::CbjectPtr |ocate(const Ice::Current& current, |ce::Local ObjectPtr& cookie)

/] Code to locate and instantiate a file here...

}

virtual void finished(const lce::Current& current, const lce::CbjectPtr& servant, const lce::
Local Qbj ect Pt r& cooki e)

{
}
virtual void deactivate(const std::string& category)
{
}
I
/1

/] Register two locators, one for directories and

/1 one for files.

/1

adapt er - >addSer vant Locat or (new Di rectoryLocator (), "d");
adapt er - >addSer vant Locat or (new Fi |l eLocator(), "f");

® Yet another option is to use the cat egor y member of the object identity, but to use a single default servant locator (that is, a locator for the
empty category). With this approach, all invocations go to the single default servant locator, and you can switch on the cat egor y value inside the
implementation of the | ocat e operation to determine which type of servant to instantiate. However, this approach is harder to maintain than the
previous one; the cat egor y member of the Ice object identity exists specifically to support servant locators, so you might as well use it as
intended.

Back to Top »
See Also

® Servant Locator Example
® Object Identity

-

Previous

https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Object+Identity
https://doc.zeroc.com/display/IceMatlab/Servant+Locator+Example
https://doc.zeroc.com/display/IceMatlab/Using+Cookies+with+Servant+Locators

	Using Identity Categories with Servant Locators

