
1.
2.

Thread Pool Design Considerations

Improper configuration of a can have a serious impact on the performance of your application. This page discusses some issues that you thread pool
should consider when designing and configuring your applications.

On this page:

Single-Threaded Pool
Multi-Threaded Pool
Serializing Requests in a Multi-Threaded Pool

Single-Threaded Pool
There are several implications of using a thread pool with a maximum size of one thread:

Only one message can be dispatched at a time.

This can be convenient because it lets you avoid (or postpone) dealing with in your application. However, it also eliminates thread-safety issues
the possibility of dispatching requests concurrently, which can be a bottleneck for applications running on multi-CPU systems or that perform
blocking operations. Another option is to enable in a multi-threaded pool.serialization

Only one AMI reply can be processed at a time.

An application must increase the size of the client thread pool in order to process multiple AMI callbacks in parallel.

Nested twoway invocations are limited.

At most one level of is possible.nested twoway invocations

It is important to remember that a communicator's client and server thread pools have a default maximum size of one thread, therefore these limitations
also apply to any object adapter that shares the communicator's thread pools.

Back to Top ^

Multi-Threaded Pool
Configuring a thread pool to support multiple threads implies that the application is prepared for the Ice run time to dispatch operation invocations or AMI
callbacks concurrently. Although greater effort is required to design a thread-safe application, you are rewarded with the ability to improve the application's
scalability and throughput.

Choosing an appropriate maximum size for a thread pool requires careful analysis of your application. For example, in compute-bound applications it is
best to limit the number of threads to the number of physical processor cores or threads on the host machine; adding any more threads only increases
context switches and reduces performance. Increasing the size of the pool beyond the number of cores can improve responsiveness when threads can
become blocked while waiting for the operating system to complete a task, such as a network or file operation. On the other hand, a thread pool configured
with too many threads can have the opposite effect and negatively impact performance. Testing your application in a realistic environment is the
recommended way of determining the optimum size for a thread pool.

If your application uses , it is very important that you evaluate whether it is possible for thread starvation to cause a deadlock. Increasing nested invocations
the size of a thread pool can lessen the chance of a deadlock, but other design solutions are usually preferred.

Back to Top ^

Serializing Requests in a Multi-Threaded Pool
When using a multi-threaded pool, the nondeterministic nature of thread scheduling means that requests from the same connection may not be dispatched
in the order they were received. Some applications cannot tolerate this behavior, such as a transaction processing server that must guarantee that
requests are executed in order. There are two ways of satisfying this requirement:

Use a single-threaded pool.
Configure a multi-threaded pool to serialize requests using its property.Serialize

At first glance these two options may seem equivalent, but there is a significant difference: a single-threaded pool can only dispatch one request at a time
and therefore serializes requests from connections, whereas a multi-threaded pool configured for serialization can dispatch requests from different all
connections concurrently while serializing requests from the same connection.

https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Thread+Safety
https://doc.zeroc.com/display/IceMatlab/Nested+Invocations
https://doc.zeroc.com/display/IceMatlab/Nested+Invocations
https://doc.zeroc.com/display/IceMatlab/Thread+Pools#ThreadPools-ConfiguringThreadPools

You can obtain a comparable behavior from a multi-threaded pool without enabling serialization, but only if you design the clients so that they do not send r
, do not send requests over more than one connection, and only use synchronous twoway invocations. In general, however, equests from multiple threads

it is better to avoid such tight coupling between the implementations of the client and server.

Enabling serialization can improve responsiveness and performance compared to a single-threaded pool, but there is an associated cost. The extra
synchronization that the pool must perform to serialize requests can add significant overhead and result in higher latency and reduced throughput.

As you can see, thread pool serialization is not a feature that you should enable without analyzing whether the benefits are worthwhile. For example, it
might be an inappropriate choice for a server with long-running operations when the client needs the ability to have several operations in progress
simultaneously. If serialization was enabled in this situation, the client would be forced to work around it by to the server, opening several connections
which again tightly couples the client and server implementations. If the server must keep track of the order of client requests, a better solution would be to
use serialization in conjunction with to queue the incoming requests for execution by other threads.AMD

Back to Top ^

See Also

Thread Pools
Concurrent Proxy Invocations
Nested Invocations
Thread Safety
Connection Establishment

For requests dispatched using (AMD), only serializes the dispatching, not the requests themselves. asynchronous method dispatch Serialize
Ice will dispatch the next request once its dispatch its complete–it does not wait for the first request to provide a response or exception.

https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-AsynchronousMethodDispatch
https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Nested+Invocations
https://doc.zeroc.com/display/IceMatlab/Thread+Safety
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Terminology#Terminology-AsynchronousMethodDispatch

	Thread Pool Design Considerations

