
Nested Invocations

A is one that is made within the context of another Ice operation. For instance, the implementation of an operation in a servant might nested invocation
need to make a nested invocation on some other object, or an AMI callback object might invoke an operation in the course of processing a reply to an
asynchronous request. It is also possible for one of these invocations to result in a nested callback to the originating process. The maximum depth of such
invocations is determined by the size of the thread pools used by the communicating parties.

On this page:

Deadlocks with Nested Invocations
Analyzing an Application for Nested Invocations

Deadlocks with Nested Invocations
Applications that use nested invocations must be carefully designed to avoid the potential for deadlock, which can easily occur when invocations take a
circular path. For example, this illustration presents a deadlock scenario when using the default thread pool configuration:

Nested invocation deadlock.

In this diagram, the implementation of makes a nested twoway invocation of , but the implementation of causes a deadlock when it tries to opA opB opB
make a nested callback. As mentioned in , the communicator's thread pools have a maximum size of one thread unless explicitly configured Thread Pools
otherwise. In Server A, the only thread in the server thread pool is busy waiting for its invocation of to complete, and therefore no threads remain to opB
handle the callback from Server B. The client is now blocked because Server A is blocked, and they remain blocked indefinitely unless timeouts are used.

There are several ways to avoid a deadlock in this scenario:

Increase the maximum size of the server thread pool in Server A.

Configuring the server thread pool in Server A to support more than one thread allows the nested callback to proceed. This is the simplest
solution, but it requires that you know in advance how deeply nested the invocations may occur, or that you set the maximum size to a sufficiently
large value that exhausting the pool becomes unlikely. For example, setting the maximum size to two avoids a deadlock when a single client is
involved, but a deadlock could easily occur again if multiple clients invoke simultaneously. Furthermore, setting the maximum size too large opA
can cause its own .set of problems

Use a oneway invocation.

If Server A called using a , it would no longer need to wait for a response and therefore could complete, making a opB oneway invocation opA
thread available to handle the callback from Server B. However, we have made a significant change in the semantics of because now there opA
is no guarantee that has completed before returns, and it is still possible for the oneway invocation of to block.opB opA opB

Create another object adapter for the callbacks.

No deadlock occurs if the callback from Server B is directed to a different object adapter that is configured with its .own thread pool

Implement using asynchronous dispatch and invocation.opA

https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Thread+Safety
https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Thread+Pool+Design+Considerations
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Thread+Pools

By declaring as an AMD operation and invoking using AMI, Server A can avoid blocking the thread pool's thread while it waits for to opA opB opB
complete. This technique, known as , is used extensively in Ice services such as IceGrid and Glacier2 to eliminate asynchronous request chaining
the possibility of deadlocks.

As another example, consider a client that makes a nested invocation from an AMI callback object using the default thread pool configuration. The (one
and only) thread in the client thread pool receives the reply to the asynchronous request and invokes its callback object. If the callback object in turn
makes a nested twoway invocation, a deadlock occurs because no more threads are available in the client thread pool to process the reply to the nested
invocation. The solutions are similar to some of those presented in the above illustration: increase the maximum size of the client thread pool, use a
oneway invocation, or call the nested invocation using AMI.

Back to Top ^

Analyzing an Application for Nested Invocations
A number of factors must be considered when evaluating whether an application is properly designed and configured for nested invocations:

The thread pool configurations in use by all communicating parties have a significant impact on an application's ability to use nested invocations.
While analyzing the path of circular invocations, you must pay careful attention to the threads involved to determine whether sufficient threads are
available to avoid deadlock. This includes not just the threads that dispatch requests, but also the threads that make the requests and process the
replies. Enabling the property can give you a better understanding of the thread pool behavior in your application.Ice.Trace.ThreadPool
Bidirectional connections are another complication, since you must be aware of which threads are used on either end of the connection.
Finally, the synchronization activities of the communicating parties must also be scrutinized. For example, a deadlock is much more likely when a
lock is held while making an invocation.

As you can imagine, tracing the call flow of a distributed application to ensure there is no possibility of deadlock can quickly become a complex and tedious
process. In general, it is best to avoid circular invocations if at all possible.

Back to Top ^

See Also

Thread Pools
Object Adapter Thread Pools
Thread Pool Design Considerations
Oneway Invocations

https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Object+Adapter+Thread+Pools
https://doc.zeroc.com/display/IceMatlab/Thread+Pool+Design+Considerations
https://doc.zeroc.com/display/IceMatlab/Oneway+Invocations
https://doc.zeroc.com/display/IceMatlab/Concurrent+Proxy+Invocations
https://doc.zeroc.com/display/IceMatlab/Thread+Safety

	Nested Invocations

