
Thread Safety

The Ice run time itself is fully thread safe, meaning multiple application threads can safely call methods on objects such as communicators, object
adapters, and proxies without synchronization problems. As a developer, you must also be concerned with thread safety because the Ice run time can
dispatch multiple invocations concurrently in a server. In fact, it is possible for multiple requests to proceed in parallel within the same servant and within
the same operation on that servant. It follows that, if the operation implementation manipulates non-stack storage (such as member variables of the
servant or global or static data), you must interlock access to this data to avoid data corruption.

The need for thread safety in an application depends on its configuration. Using the default configuration typically makes synchronization thread pool
unnecessary because at most one operation can be dispatched at a time. Thread safety becomes an issue once you increase the maximum size of a
thread pool.

Ice uses the native synchronization and threading primitives of each platform. For C++ users, Ice provides a collection of convenient and portable wrapper
 for use by Ice applications.classes

On this page:

Threading Issues with Marshaling
Thread Creation and Destruction Hooks
Installing Thread Hooks with a Plug-in

Threading Issues with Marshaling
The marshaling semantics of the Ice run time present a subtle thread safety issue that arises when an operation returns data by reference:

Ice is marshaling this data, outside any synchronization under the control of the application
At the same time, another request updates the same very same data

Ice provides an elegant solution for this problem with the metadata, available for the following language mappings:marshaled-result

C++11
C#
Java
Python

Back to Top ^

Thread Creation and Destruction Hooks
On occasion, it is necessary to intercept the creation and destruction of threads created by the Ice run time, for example, to interoperate with libraries that
require applications to make thread-specific initialization and finalization calls (such as COM's and). Ice provides CoInitializeEx CoUninitialize
callbacks to inform an application when each run-time thread is created and destroyed.

The callback or callbacks are registered through the parameter passed to :InitializationData initialize

C++11

struct InitializationData
{
 // ...
 std::function<void()> threadStart;
 std::function<void()> threadStop;
};

C++98

https://doc.zeroc.com/display/IceMatlab/Nested+Invocations
https://doc.zeroc.com/display/IceMatlab/Dispatching+Requests+to+User+Threads
https://doc.zeroc.com/display/IceMatlab/Thread+Pools
https://doc.zeroc.com/pages/viewpage.action?pageId=18262726
https://doc.zeroc.com/pages/viewpage.action?pageId=18262726
https://doc.zeroc.com/display/IceMatlab/Slice+Metadata+Directives
https://doc.zeroc.com/pages/viewpage.action?pageId=18262627
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+C-Sharp
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Java
https://doc.zeroc.com/display/IceMatlab/Parameter+Passing+in+Python
https://doc.zeroc.com/display/Ice37/Communicator+Initialization

class ThreadNotification : public IceUtil::Shared
{
public:
 virtual void start() = 0;
 virtual void stop() = 0;
};
typedef IceUtil::Handle<ThreadNotification> ThreadNotificationPtr;

struct InitializationData
{
 // ...
 ThreadNotificationPtr threadHook;
};

C#

public class InitializationData
{
 // ...
 public System.Action threadStart;
 public System.Action threadStop;
}

Java

public class InitializationData
{
 // ...
 public Runnable threadStart;
 public Runnable threadStop;
}

Java Compat

public interface ThreadNotification
{
 void start();
 void stop();
}

public class InitializationData
{
 // ...
 ThreadNotification threadHook;
}

Python

initData = Ice.InitializationData()
initData.threadStart = lambda: # handle thread start...
initData.threadStop = lambda: # handle thread stop...

To receive notification of thread creation and destruction, you must implement and register these callbacks. They will be called by the Ice run time by each
thread as soon as it is created, and just before it exits.

For example, you could define callbacks and register them with the Ice run time as follows:

C++11

int
main(int argc, char* argv[])
{
 Ice::InitializationData initData;
 initData.start = [] { cout << "start: id = " << std::this_thread::get_id() << endl; };
 initData.stop = [] { cout << "stop: id = " << std::this_thread::get_id() << endl; };
 Ice::CommunicatorHolder ich(argc, argv, initData);

 // ...
}

C++98

class MyHook : public Ice::ThreadNotification
{
public:
 void start()
 {
 cout << "start: id = " << ThreadControl().id() << endl;
 }
 void stop()
 {
 cout << "stop: id = " << ThreadControl().id() << endl;
 }
};

int
main(int argc, char* argv[])
{
 Ice::InitializationData initData;
 initData.threadHook = new MyHook;
 Ice::CommunicatorHolder ich(argc, argv, initData);

 // ...
}

Back to Top ^

Installing Thread Hooks with a Plug-in
The thread hook facility described requires that you modify a program's source code in order to receive callbacks when threads in the Ice run time above
are created and destroyed. It is also possible to install thread hooks using the , which is useful for adding thread hooks to an existing Ice plug-in facility
program that you cannot (or prefer not to) modify.

Ice provides a base class named for C++, Java, and C# that supplies the necessary functionality:ThreadHookPlugin

C++11

namespace Ice
{
 class ThreadHookPlugin : public Ice::Plugin
 {
 public:

 ThreadHookPlugin(const std::shared_ptr<Communicator>& communicator, std::function<void()>, std::
function<void()>);

 virtual void initialize();
 virtual void destroy();
 };
}

C++98

https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility

namespace Ice
{
 class ThreadHookPlugin : public Ice::Plugin
 {
 public:

 ThreadHookPlugin(const CommunicatorPtr& communicator, const ThreadNotificationPtr&);

 virtual void initialize();
 virtual void destroy();
 };
}

C#

namespace Ice
{
 public class ThreadHookPlugin : Plugin
 {
 public ThreadHookPlugin(Communicator communicator, System.Action threadStart, System.Action threadStop)
{ ... }

 public void initialize() {}
 public void destroy() {}
 }
}

Java

package com.zeroc.Ice;
public class ThreadHookPlugin implements Plugin
{
 public ThreadHookPlugin(Communicator communicator, Runnable threadStart, Runnable threadStop) { ... }

 @Override
 public void initialize() {}

 @Override
 public void destroy() {}
}

Java Compat

package Ice;
public class ThreadHookPlugin implements Plugin
{
 public ThreadHookPlugin(Communicator communicator, ThreadNotificationHook threadHook) { ... }

 @Override
 public void initialize() {}

 @Override
 public void destroy() {}
}

The constructor installs the given thread callbacks into the specified communicator. The and methods are ThreadHookPlugin initialize destroy
empty, but you can subclass and override these methods if necessary.ThreadHookPlugin

In order to create a thread hook plug-in, you must do the following:

Define and export a factory class (for Java and C#) or factory function (for C++) that returns an instance of , as described in ThreadHookPlugin
the .plug-in API
Implement the callback(s) that you will pass to the constructor.ThreadHookPlugin
Package your code into a format that is suitable for dynamic loading, such as a shared library or DLL for C++ or an assembly for C#.

See the for more details on how to package and register your plug-in.Plug-in Facility

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Plug-in+API
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility

See Also

Communicator Initialization
Plug-in Facility
Plug-in API
Ice.Plugin.*
Ice.InitPlugins
Ice.PluginLoadOrder

https://doc.zeroc.com/display/IceMatlab/Communicator+Initialization
https://doc.zeroc.com/display/IceMatlab/Plug-in+Facility
https://doc.zeroc.com/display/IceMatlab/Plug-in+API
https://doc.zeroc.com/pages/viewpage.action?pageId=18263653
https://doc.zeroc.com/pages/viewpage.action?pageId=18263649
https://doc.zeroc.com/display/IceMatlab/Ice.PluginLoadOrder
https://doc.zeroc.com/display/IceMatlab/Nested+Invocations
https://doc.zeroc.com/display/IceMatlab/Dispatching+Requests+to+User+Threads

	Thread Safety

