
1.
2.

3.

4.

5.

Connection Establishment

Connections are established as a side effect of using proxies. The first invocation on a proxy causes the Ice run time to search for an existing connection
to one of the ; only if no suitable connection exists does the Ice run time establish a new connection to one of the proxy's endpoints.proxy's endpoints

This page describes how and when Ice establishes a new connection.

On this page:

Endpoint Selection for New Connections
Error Semantics for Failed Connections
Reusing an Existing Connection

Protocol Compression and Connection Reuse
Influencing Connection Reuse

Connection Caching
Timeouts and Connection Establishment
Source Address for New Connections

Endpoint Selection for New Connections
A proxy performs a number of operations on its endpoints before it asks the Ice run time to supply a connection. These operations produce a list of zero or
more endpoints that satisfy the proxy's configuration. If the resulting list is empty, the application receives to indicate that no NoEndpointException
suitable endpoints could be found. For example, this situation can arise when a twoway proxy contains only a UDP endpoint; the UDP endpoint is
eliminated from consideration because it cannot be used for twoway invocations.

The proxy performs the following steps to derive its endpoint list:

Remove the endpoints of unknown transports. For instance, SSL endpoints are removed if the is not installed.SSL plug-in
Remove endpoints that are not suitable for the proxy's invocation mode. For example, datagram endpoints are removed for twoway, oneway and
batch oneway proxies. Similarly, non-datagram endpoints are removed for datagram and batch datagram proxies.
Perform DNS queries to convert host names into IP addresses, if necessary. For a multi-homed host name, the proxy adds a new endpoint for
each address returned by the DNS query.
Sort the endpoints according to the configured selection type, which is established using the proxy method. The ice_endpointSelection
default value is , meaning the endpoints are randomly shuffled. Alternatively, the value maintains the existing order of the Random Ordered
endpoints.
Satisfy the proxy's security requirements:

If is defined, remove all non-secure endpoints.Ice.Override.Secure
Otherwise, if the proxy is configured to prefer secure endpoints (e.g., by calling the proxy method), move all ice_preferSecure
secure endpoints to the beginning of the list. Note that this setting still allows non-secure endpoints to be included.
Otherwise, move all non-secure endpoints to the beginning of the list.

If is enabled and the Ice run time , it reuses the cached connection. Otherwise, the run time connection caching already has a compatible connection
attempts to connect to each endpoint in the list until it succeeds or exhausts the list; the order in which endpoints are selected for connection attempts
depends on the endpoint selection policy. This policy can be set using a default property (), using a proxy property (Ice.Default.EndpointSelection

), and using the ..EndpointSelectionname ice_endpointSelection proxy method

Back to Top ^

Error Semantics for Failed Connections
If a failure occurs during a connection attempt, the Ice run time tries to connect to all of the proxy's remaining endpoints until either a connection is
successfully established or all attempts have failed. At that point, the Ice run time may attempt depending on the value of the automatic retries Ice.

 configuration property. The default value of this property is , which causes the Ice run time to try connecting to all of the endpoints one RetryIntervals 0
more time.

If no connection can be established on this second attempt, the Ice run time raises an exception that indicates the reason for the final failed attempt
(typically). Similarly, if a connection was lost during a request and could not be reestablished (assuming the request can be ConnectFailedException
retried), the Ice run time raises an exception that indicates the reason for the final failed attempt.

Back to Top ^

Tip

Define the property to monitor these attempts.Ice.Trace.Retry=2

https://doc.zeroc.com/display/IceMatlab/Connection+Management
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Proxy+Endpoints
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.EndpointSelection
https://doc.zeroc.com/display/IceMatlab/Proxy+Properties#ProxyProperties-name.EndpointSelection
https://doc.zeroc.com/display/IceMatlab/Proxy+Properties#ProxyProperties-name.EndpointSelection
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.RetryIntervals
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties#MiscellaneousIce.*Properties-Ice.RetryIntervals

Reusing an Existing Connection
When establishing a connection for a proxy, the Ice run time reuses an existing connection when all the following conditions are met:

The proxy has enabled.connection caching
The remote endpoint matches one of the proxy's endpoints.
The connection was established by the communicator that created the proxy.
The connection matches the proxy's configuration. play an important role here, as an existing connection is only Connection timeout values
reused if its connection timeout value (i.e., the connection timeout used when the connection was established) matches the endpoint timeout in
the new proxy. Similarly, a proxy configured with a only reuses a connection if it was established by a proxy with the same connection ID
connection ID.

When a proxy has connection caching disabled, the Ice run time does not prefer an endpoint with an already established connection over other endpoints.
It can select an endpoint without an established connection and create a new connection; or it can select an endpoint with an established connection and
reuse that connection.

Applications must exercise caution when using proxies containing multiple endpoints, especially endpoints using different transports. For example,
suppose a proxy has multiple endpoints, such as one each for tcp and ssl. When establishing a connection for this proxy, the Ice run time will open a new
connection only if it cannot reuse an existing connection to any of the endpoints (assuming is enabled). Furthermore, the proxy in its connection caching
default (that is, non-secure) configuration gives higher priority to non-secure endpoints. If you want to ensure that a particular transport is used by a proxy,
you must create the appropriate proxy, for example by calling the proxy method ice_secure.

Back to Top ^

Protocol Compression and Connection Reuse

The Ice run time does not consider settings when searching for existing connections to reuse; proxies whose compression settings differ can compression
share the same connection (assuming all other selection criteria are satisfied).

Back to Top ^

Influencing Connection Reuse

The default behavior of the Ice run time, which reuses connections whenever possible, is appropriate for many applications because it conserves
resources and typically has little or no impact on performance. However, when a server implementation attaches semantics to a connection, the client
often must be designed to cooperate, despite the tighter coupling it causes. For example, a server might use a serialized to preserve the order thread pool
of requests received over each connection. If the client wants to execute several requests simultaneously, it must be able to force the Ice run time to
establish new connections at will.

For those situations that require more control over connection reuse, the Ice run time allows you to form arbitrary groups of proxies that share a connection
by configuring them with the same connection identifier. The returns a new proxy configured with the given connection proxy method ice_connectionId
ID. Once configured, the Ice run time ensures that the proxy only reuses a connection that was established by a proxy with the same connection ID
(assuming all other criteria for connection reuse are also satisfied). A new connection is created if none with a matching ID is found, which means each
proxy could conceivably have its own connection if each were assigned a unique connection ID.

As an example, consider the following code fragment:

C++11

auto prx = communicator->stringToProxy("ident:tcp -p 10000");
auto = g1 = prx->ice_connectionId("group1");
auto g2 = prx->ice_connectionId("group2");
prx->ice_ping(); // Opens a new connection
g1->ice_ping(); // Opens a new connection
g2->ice_ping(); // Opens a new connection
auto i1 = Ice::checkedCast<MyInterfacePrx>(g1);
i1->ice_ping(); // Reuses g1's connection
auto i2 = Ice::checkedCast<MyInterfacePrx>(prx->ice_connectionId("group2"));
i2->ice_ping(); // Reuses g2's connection

C++98

https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Protocol+Compression
https://doc.zeroc.com/display/IceMatlab/The+Ice+Threading+Model
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods

1.
2.
3.

Ice::ObjectPrx prx = comm->stringToProxy("ident:tcp -p 10000");
Ice::ObjectPrx g1 = prx->ice_connectionId("group1");
Ice::ObjectPrx g2 = prx->ice_connectionId("group2");
prx->ice_ping(); // Opens a new connection
g1->ice_ping(); // Opens a new connection
g2->ice_ping(); // Opens a new connection
MyInterfacePrx i1 = MyInterfacePrx::checkedCast(g1);
i1->ice_ping(); // Reuses g1's connection
MyInterfacePrx i2 = MyInterfacePrx::checkedCast(prx->ice_connectionId("group2"));
i2->ice_ping(); // Reuses g2's connection

A total of three connections are established by this example:

The proxy establishes a new connection. This proxy has the default connection ID (an empty string).prx
The proxy establishes a new connection because the only existing connection, the one established by , has a different connection ID.g1 prx
Similarly, the proxy establishes a new connection because none of the existing connections have a matching connection ID.g2

The proxy inherits its connection ID from , and therefore shares the connection for ; explicitly configured its connection ID and shares the i1 g1 group1 i2
 connection with proxy .group2 g2

Back to Top ^

Connection Caching
When we refer to a proxy's connection, we actually mean the connection that the proxy is using. This connection can change over time, such that currently
a proxy might use several connections during its lifetime. For example, an idle connection may be and then transparently replaced by closed automatically
a new connection when activity resumes.

After establishing a connection in response to proxy activities, the Ice run time adds the connection to an internal pool for subsequent by other reuse
proxies. The Ice run time manages the lifetime of the connection and eventually it. The connection is not affected by the life cycle of the proxies that closes
use it, except that the lack of activity may prompt the Ice run time to close the connection after a while.

Once a proxy has been associated with a connection, the proxy's default behavior is to continue using that connection for all subsequent requests. In
effect, the proxy caches the connection and attempts to use it for as long as possible in order to minimize the overhead of creating new connections. If the
connection is later closed and the proxy is used again, the proxy repeats the connection-establishment procedure described .earlier

There are situations in which this default caching behavior is undesirable, such as when a client has a proxy with multiple endpoints and wishes to balance
the load among the servers at those endpoints. The client can disable connection caching by passing an argument of to the false proxy factory method i

. The new proxy returned by this method repeats the connection-establishment procedure before each request, thereby ce_connectionCached
achieving request load balancing at the expense of potentially higher latency. This type of load balancing is performed solely by the client using whatever
endpoints are contained in the proxy. More sophisticated forms of load balancing are also possible, such as when using .IceGrid

Enabling or disabling connection caching on a proxy has two separate effects:

when caching is enabled, the proxy remembers ("caches") a connection until the connection is closed, while when caching is disabled, the proxy
does not remember the connection it previously used.
when caching is enabled, Ice provides to this proxy an already established connection if possible; when caching is disabled, Ice does not prefer
endpoints with established connections over other endpoints when providing a connection to this proxy.

Back to Top ^

Timeouts and Connection Establishment
The default timeout for all connections is 60 seconds, as determined by the property. This value applies to all Ice.Default.Timeout connection timeout
network operations. If a connection cannot be established within the allotted time, Ice raises .ConnectTimeoutException

You can set a connection timeout on a proxy using the . To use the same connection timeout for all proxies, you can define ice_timeout proxy method
the property; in this case, Ice ignores any connection timeout established using the proxy method or the Ice.Override.Timeout ice_timeout Ice.

 property. Finally, if you want to specify a value that affects only connection establishment and takes precedence Default.Timeout separate timeout
over a proxy's configured timeout value, you can define the property.Ice.Override.ConnectTimeout

Connection timeout values affect . For example, if the endpoint in proxy A is identical to the endpoint in proxy B except their connection connection reuse
timeout values differ, the proxies cannot share the same connection.

The timeout in effect when a connection is established is bound to that connection and cannot be changed. If a network operation times out, all
outstanding requests on that connection receive a and the connection is . The Ice run time automatically retries TimeoutException closed forcefully
these requests on a new connection, assuming that are enabled and would not violate at-most-once semantics.automatic retries

https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.Timeout
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.Timeout
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.ConnectTimeout
https://doc.zeroc.com/display/IceMatlab/Using+Connections#UsingConnections-close
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries

Back to Top ^

Source Address for New Connections
You can force Ice to use a specific source address for TCP/IP connections. This can be useful in specific uses cases, such as to overcome the limited
number of ephemeral ports. There are two ways to do this:

Define the property to establish a default source address for all outgoing connections created by a Ice.Default.SourceAddress
communicator
Include a option in proxy endpoints, which overrides any setting for --sourceAddress Ice.Default.SourceAddress

The value in each case must be an IP address.

Back to Top ^

See Also

Proxy Methods
Proxy Endpoints
The Ice Threading Model
Automatic Retries
Connection Timeouts
Active Connection Management
IceGrid
Ice.Default.*
Proxy Properties
Miscellaneous Ice.* Properties

Invocation timeouts are a separate feature and do not affect connection reuse.

https://doc.zeroc.com/pages/viewpage.action?pageId=18263648#Ice.Default.*-Ice.Default.SourceAddress
https://doc.zeroc.com/display/IceMatlab/Proxy+and+Endpoint+Syntax
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Proxy+Endpoints
https://doc.zeroc.com/display/IceMatlab/The+Ice+Threading+Model
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/IceGrid
https://doc.zeroc.com/pages/viewpage.action?pageId=18263648
https://doc.zeroc.com/display/IceMatlab/Proxy+Properties
https://doc.zeroc.com/display/IceMatlab/Miscellaneous+Ice.*+Properties
https://doc.zeroc.com/display/IceMatlab/Connection+Management
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Invocation+Timeouts

	Connection Establishment

