
Using Connections

Applications can gain access to an Ice object representing an established connection.

On this page:

The Connection Interface
Flushing Batch Requests for a Connection

The Endpoint Interface
Opaque Endpoints

Client-Side Connection Usage
Server-Side Connection Usage
Closing a Connection

Forcefully
Gracefully
Gracefully with Wait

The InterfaceConnection
The Slice definition of the interface is shown below:Connection

Slice

module Ice
{
 local class ConnectionInfo
 {
 ConnectionInfo underlying;
 bool incoming;
 string adapterName;
 string connectionId;
 }

 ["delegate"]
 local interface CloseCallback
 {
 void closed(Connection con);
 }

 ["delegate"]
 local interface HeartbeatCallback
 {
 void heartbeat(Connection con);
 }

 local enum ACMClose
 {
 CloseOff,
 CloseOnIdle,
 CloseOnInvocation,
 CloseOnInvocationAndIdle,
 CloseOnIdleForceful
 }

 local enum ACMHeartbeat
 {
 HeartbeatOff,
 HeartbeatOnInvocation,
 HeartbeatOnIdle,
 HeartbeatAlways
 }

 local struct ACM

https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Closure

 {
 int timeout;
 ACMClose close;
 ACMHeartbeat heartbeat;
 }

 local enum ConnectionClose
 {
 Forcefully,
 Gracefully,
 GracefullyWithWait
 }

 local interface Connection
 {
 void close(ConnectionClose mode);
 Object* createProxy(Identity id);
 void setAdapter(ObjectAdapter adapter);
 ObjectAdapter getAdapter();
 Endpoint getEndpoint();
 void flushBatchRequests();
 void setCloseCallback(CloseCallback callback);
 void setHeartbeatCallback(HeartbeatCallback callback);
 void setACM(optional(1) int timeout, optional(2) ACMClose close, optional(3) ACMHeartbeat heartbeat);
 ACM getACM();
 string type();
 int timeout();
 string toString();
 ConnectionInfo getInfo();
 void setBufferSize(int rcvSize, int sndSize);
 void throwException();
 }

 local class IPConnectionInfo extends ConnectionInfo
 {
 string localAddress;
 int localPort;
 string remoteAddress;
 int remotePort;
 }

 local class TCPConnectionInfo extends IPConnectionInfo
 {
 int rcvSize;
 int sndSize;
 }

 local class UDPConnectionInfo extends IPConnectionInfo
 {
 string mcastAddress;
 int mcastPort;
 int rcvSize;
 int sndSize;
 }

 dictionary<string, string> HeaderDict;

 local class WSConnectionInfo extends ConnectionInfo
 {
 HeaderDict headers;
 }
}

module IceSSL
{
 local class ConnectionInfo extends Ice::ConnectionInfo
 {
 string cipher;
 Ice::StringSeq certs;
 bool verified;
 }

}

module IceBT
{
 local class ConnectionInfo extends Ice::ConnectionInfo
 {
 string localAddress = "";
 int localChannel = -1;
 string remoteAddress = "";
 int remoteChannel = -1;
 string uuid = "";
 }
}

module IceIAP
{
 local class ConnectionInfo extends Ice::ConnectionInfo
 {
 string name;
 string manufacturer;
 string modelNumber;
 string firmwareRevision;
 string hardwareRevision;
 string protocol;
 }
}

As indicated in the Slice definition, a connection is a , similar to a communicator or an object adapter. A connection therefore is only usable local interface
within the process and cannot be accessed remotely.

The interface supports the following operations:Connection

void close(ConnectionClose mode)
Explicitly using the given closure mode.closes the connection

Object* createProxy(Identity id)
Creates a special proxy that only uses this connection. This operation is primarily used for .bidirectional connections

void setAdapter(ObjectAdapter adapter)
Associates this connection with an object adapter to enable a .bidirectional connection

ObjectAdapter getAdapter()
Returns the object adapter associated with this connection, or nil if no association has been made.

Endpoint getEndpoint()
Returns an . objectEndpoint

void flushBatchRequests()
Flushes any pending for this connection.batch requests

void setCloseCallback(CloseCallback callback)
Associates a callback with this connection that is invoked whenever the connection is closed. Passing a nil value clears the current callback.

void setHeartbeatCallback(HeartbeatCallback callback)
Associates a callback with this connection that is invoked whenever the connection receives a heartbeat message. Passing a nil value clears the
current callback.

void setACM(optional(1) int timeout, optional(2) ACMClose close, optional(3) ACMHeartbeat heartbeat)
Configures settings for this connection. All arguments are optional, therefore you can change some of the Active Connection Management
settings while leaving the others unaffected. Refer to your language mapping for more details on optional parameters.

ACM getACM()
Returns the connection's current settings for .Active Connection Management

string type()
Returns the connection type as a string, such as ."tcp"

int timeout()
Returns the value used when the connection was established.timeout

string toString()
Returns a readable description of the connection.

https://doc.zeroc.com/display/IceMatlab/Local+Types
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts

ConnectionInfo getInfo()
This operation returns a instance. . Note that the object returned by implements a more derived interface, ConnectionInfo getInfo
depending on the connection type. You can down-cast the returned class instance and access the connection-specific information according to
the type of the connection.

The member of the instance is true if the connection is an incoming connection and false, otherwise. If iincoming ConnectionInfo incoming
s true, provides the name of the object adapter that accepted the connection. The member contains the identifier adapterName connectionId
set with the proxy method. ice_connectionId

The member contains the underlying transport information if the connection uses a transport that delegates to an underlying underlying
transport. For example, the SSL transport delegates to the TCP transport so the data member of an SSL connection underlying
information is set to a instance. For a WSS connection, returns a instance whose TCPConnectionInfo getInfo WSConnectionInfo underl

 data member is set to an whose data member is set to a .ying IceSSL::ConnectionInfo underlying TCPConnectionInfo

void setBufferSize(int rcvSize, int sndSize)
Sets the connection buffer receive and send sizes.

void throwException()
Throws an exception indicating the reason for connection closure. For example, is raised if the connection was CloseConnectionException
closed gracefully by the remote peer, whereas is raised if the connection was manually closed ConnectionManuallyClosedException
locally by the application. This operation does nothing if the connection is not yet closed.

Back to Top ^

Flushing Batch Requests for a Connection

The operation blocks the calling thread until any batch requests that are queued for a connection have been successfully written flushBatchRequests
to the local transport. To avoid the risk of blocking, you can also invoke this operation asynchronously.

Since batch requests are inherently oneway invocations, the async method does not support a request callback. However, you flushBatchRequests
can use the exception callback to handle any errors that might occur while flushing, and the sent callback to receive notification that the batch request has
been flushed successfully.

For example, the code below demonstrates how to flush batch requests asynchronously in C++:

C++11

void flushConnection(Ice::CompressBatch compressBatch, const std::shared_ptr<Ice::Connection>& conn)
{
 // std::future version also available
 conn->flushBatchRequestsAsync(compressBatch,
 [](std::exception_ptr) { cout << "Flush failed" << endl; },
 [](bool) { cout << "Batch sent" << endl; });
}

C++98

class FlushCallback : public IceUtil::Shared
{
public:

 void exception(const Ice::Exception& ex)
 {
 cout << "Flush failed: " << ex << endl;
 }

 void sent(bool sentSynchronously)
 {
 cout << "Batch sent!" << endl;
 }
};
typedef IceUtil::Handle<FlushCallback> FlushCallbackPtr;

void flushConnection(Ice::CompressBatch compressBatch, const Ice::ConnectionPtr& conn)
{
 FlushCallbackPtr f = new FlushCallback;
 Ice::Callback_Connection_flushBatchRequestsPtr cb =
 Ice::newCallback_Connection_flushBatchRequests(
 f, &FlushCallback::exception, &FlushCallback::sent);
 conn->begin_flushBatchRequests(compressBatch, cb);
}

For more information on asynchronous invocations, please see the relevant language mapping chapter.

Back to Top ^

The InterfaceEndpoint
The operation returns an interface of type :Connection::getEndpoint Endpoint

Slice

module Ice
{
 const short TCPEndpointType = 1;
 const short UDPEndpointType = 3;
 const short WSEndpointType = 4;
 const short WSSEndpointType = 5;
 const short BTEndpointType = 6;
 const short BTSEndpointType = 7;
 const short iAPEndpointType = 8;
 const short iAPSEndpointType = 9;

 local class EndpointInfo
 {
 EndpointInfo underlying;
 int timeout;
 bool compress;
 short type();
 bool datagram();
 bool secure();
 }

 local interface Endpoint
 {
 EndpointInfo getInfo();
 string toString();
 }

 local class IPEndpointInfo extends EndpointInfo
 {
 string host;

 int port;
 string sourceAddress;
 }

 local class TCPEndpointInfo extends IPEndpointInfo {};

 local class UDPEndpointInfo extends IPEndpointInfo
 {
 byte protocolMajor;
 byte protocolMinor;
 byte encodingMajor;
 byte encodingMinor;
 string mcastInterface;
 int mcastTtl;
 }

 local class WSEndpointInfo extends EndpointInfo
 {
 string resource;
 }

 local class OpaqueEndpointInfo extends EndpointInfo
 {
 Ice::EncodingVersion rawEncoding;
 Ice::ByteSeq rawBytes;
 }
}

module IceSSL
{
 local class EndpointInfo extends Ice::EndpointInfo {};
}

module IceBT
{
 local class EndpointInfo extends Ice::EndpointInfo
 {
 string addr;
 string uuid;
 }
}

module IceIAP
{
 local class EndpointInfo extends Ice::EndpointInfo
 {
 string manufacturer;
 string modelNumber;
 string name;
 string protocol;
 }
}

The operation returns an instance. Note that the object returned by implements a more derived interface, depending getInfo EndpointInfo getInfo
on the endpoint type. You can down-cast the returned class instance and access the endpoint-specific information according to the type of the endpoint, as
returned by the operation.type

The member provides the in milliseconds. The member is true if the endpoint uses (if available). The timeout timeout compress compression datagram
operation returns true if the endpoint is for a transport, and the operation returns true if the endpoint uses .datagram secure SSL

The member contains the underlying endpoint information if the transport delegates to an underlying transport. For example, the SSL underlying
transport uses the TCP transport so the data member of an SSL endpoint information is set to a instance. For a WSS underlying TCPEndpointInfo
endpoint, returns a instance whose data member is set to an whose getInfo WSEndpointInfo underlying IceSSL::EndpointInfo underlying
data member is set to a .TCPEndpointInfo

The derived classes provide further detail about the endpoint according to its type.

Back to Top ^

https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Protocol+Compression
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/IceSSL

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrecognized by the Ice run time. In this situation, Ice preserves the endpoint
in its encoded () form so that the proxy remains intact, but Ice ignores the endpoint for all connection-related activities. Preserving the endpoint opaque
allows an application to later forward that proxy with all of its original endpoints to a different program that might support the endpoint type in question.

Although a connection will never return an opaque endpoint, it is possible for a program to encounter an opaque endpoint when iterating over the
endpoints returned by the .proxy method ice_getEndpoints

As a practical example, consider a program for which the plug-in is not configured. If this program receives a proxy containing an SSL endpoint, Ice IceSSL
treats it as an opaque endpoint such that calling on the endpoint object returns an instance of .getInfo OpaqueEndpointInfo

Note that the operation of the object returns the type of the endpoint. For example, the operation returns the value type OpaqueEndpointInfo actual 2
if the object encodes an SSL endpoint. As a result, your program cannot assume that an object whose type is can be safely down-cast EndpointInfo 2
to ; if the IceSSL plug-in is not configured, such a down-cast will fail because the object is actually an instance of IceSSL::EndpointInfo OpaqueEndpo

.intInfo

Back to Top ^

Client-Side Connection Usage
Clients obtain a connection by using one of the or . If the proxy does not yet have a proxy methods ice_getConnection ice_getCachedConnection
connection, the method immediately attempts to establish one. As a result, the caller must be prepared for this method to block and ice_getConnection
raise exceptions. (Use the asynchronous version of this method to avoid blocking.) If the proxy denotes a and connection failure collocated object
collocation optimization is enabled, calling returns null.ice_getConnection

If you wish to obtain the proxy's connection without the potential for triggering connection establishment, call ; this method ice_getCachedConnection
returns null if the proxy is not currently associated with a connection or if connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection from a proxy and print its type:

C++11

auto proxy = ...
try
{
 auto conn = proxy->ice_getConnection();
 if(conn)
 {
 cout << conn->type() << endl;
 }
 else
 {
 cout << "collocated" << endl;
 }
}
catch(const Ice::LocalException& ex)
{
 cout << ex << endl;
}

C++98

Ice::ObjectPrx proxy = ...
try
{
 Ice::ConnectionPtr conn = proxy->ice_getConnection();
 if(conn)
 {
 cout << conn->type() << endl;
 }
 else
 {
 cout << "collocated" << endl;
 }
}
catch(const Ice::LocalException& ex)
{
 cout << ex << endl;
}

https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/IceMatlab/Collocated+Invocation+and+Dispatch

Back to Top ^

Server-Side Connection Usage
Servers can access a connection via the member of the parameter passed to every operation. For collocated invocations, has a con Ice::Current con
nil value.

For example, this Java code shows how to invoke on the connection:toString

Java

public int add(int a, int b, Current current)
{
 if(current.con != null)
 {
 System.out.println("Request received on connection:\n" + current.con.toString());
 }
 else
 {
 System.out.println("collocated invocation");
 }
 return a + b;
}

Although the mapping for the Slice operation results in a Java method named , the Ice run time implements to return toString _toString toString
the same value.

Back to Top ^

Closing a Connection
Applications should rarely need to close a connection manually, but those that do must be aware of its implications. The enumeration ConnectionClose
defines three closure modes:

Forcefully
Gracefully
Gracefully with wait

Forcefully

A forceful closure causes the peer to receive a .ConnectionLostException

A client must use caution when forcefully closing a connection. Any outgoing requests that are pending on the connection when is invoked will fail close
with a . Furthermore, requests that fail with this exception are not automatically retried.ConnectionManuallyClosedException

In a server context, forceful closure can be useful as a defense against hostile clients.

Gracefully

This mode initiates and causes the local Ice run time to send a message to the peer. Any outgoing graceful connection closure CloseConnection
requests that are pending on the connection when is invoked will fail with a . Furthermore, requests close ConnectionManuallyClosedException
that fail with this exception are not automatically retried.

In a server context, closing a connection gracefully causes Ice to discard any subsequent incoming requests; these requests should eventually be retried
automatically when the client receives a message. The Ice run time in the server does not send the message CloseConnection CloseConnection
until all pending dispatched requests have completed.

After invoking , Ice considers the connection to be in a state until the remote peer completes its part of the close(CloseGracefully) closing
graceful connection closure process. The connection could remain in this state for some time if the peer has no thread pool threads available to
process the message, and this can prevent operations such as from completing in a timely CloseConnection Communicator::destroy
manner. Ice uses a timeout to limit the amount of time it waits for a connection to be closed properly. Refer to Ice.Override.CloseTimeout
for more information.

https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout

Gracefully with Wait

In a client context, this mode waits until all pending requests complete before initiating . The call to can block indefinitely until the graceful closure close
pending requests have completed.

In a server context, closing a connection gracefully causes Ice to discard any subsequent incoming requests; these requests should eventually be retried
automatically when the client receives a message. The Ice run time in the server does not send the message CloseConnection CloseConnection
until all pending dispatched requests have completed.

Back to Top ^

See Also

The Current Object
Automatic Retries
Connection Establishment
Connection Closure
Bidirectional Connections
IceSSL
IceBT
IceIAP

After invoking , Ice considers the connection to be in a state until the remote peer completes its close(CloseGracefullyWithWait) closing
part of the graceful connection closure process. The connection could remain in this state for some time if the peer has no thread pool threads
available to process the message, and this can prevent operations such as from completing in CloseConnection Communicator::destroy
a timely manner. Ice uses a timeout to limit the amount of time it waits for a connection to be closed properly. Refer to Ice.Override.

for more information. CloseTimeout

https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/display/IceMatlab/IceBT
https://doc.zeroc.com/display/IceMatlab/IceIAP
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout

	Using Connections

