Using Connections
&

Previous

Applications can gain access to an Ice object representing an established connection.

On this page:

® The Connection Interface
© Flushing Batch Requests for a Connection
® The Endpoint Interface
© Opaque Endpoints
® Client-Side Connection Usage
® Server-Side Connection Usage
® Closing a Connection
© Forcefully
© Gracefully
© Gracefully with Wait

The Connect i on Interface

The Slice definition of the Connect i on interface is shown below:

Slice

nodul e I ce

{

local class Connectionlnfo

{
Connecti onl nf o underl ying;
bool i ncom ng;
string adapt er Nane;
string connectionld;

}

["del egate"]
local interface C oseCall back

{
}

voi d cl osed(Connection con);

["del egate"]
local interface Heartbeat Cal | back

{
voi d heartbeat (Connection con);
}
| ocal enum ACMCl ose
{
C oseOF f,
Cl oseOnldl e,
Cl oseOnl nvocati on,
Cl oseOnl nvocat i onAndl dl e,
Cl oseOnl dl eFor cef ul
}
| ocal enum ACMHeart beat
{
Heart beat Of f,
Hear t beat Onl nvocat i on,
Hear t beat Onl dl e,
Hear t beat Al ways
}

l ocal struct ACM

https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Closure

int tinmeout;

ACMCl ose cl ose;

ACM-ear t beat heart beat ;
}

I ocal enum Connecti ond ose
{

Forceful ly,

G aceful ly,

Graceful yWthWai t
}

local interface Connection
{
voi d cl ose(Connecti onCl ose node);
bj ect* createProxy(ldentity id);
voi d set Adapt er (Obj ect Adapt er adapter);
oj ect Adapt er get Adapter();
Endpoi nt get Endpoi nt () ;
voi d flushBat chRequests();
voi d set Cl oseCal | back(d oseCal | back cal | back);
voi d set Heart beat Cal | back(Hear t beat Cal | back cal | back) ;
void set ACMoptional (1) int timeout, optional (2) ACMC ose cl ose, optional (3) ACMHeartbeat heartbeat);
ACM get ACM) ;
string type();
int timeout();
string toString();
Connectionlnfo getinfo();
voi d setBufferSize(int rcvSize, int sndSize);
voi d throwException();
}

I ocal class |PConnectionlnfo extends Connectionlnfo
{

string | ocal Address;

int |ocal Port;

string renoteAddress;

int renotePort;

}

I ocal class TCPConnectionl nfo extends |PConnectionlnfo
{

int rcvSize;

int sndSize;

I ocal class UDPConnectionlnfo extends |PConnectionlnfo

string ntast Address;
int ncastPort;

int rcvSize;

int sndSize;

}
di ctionary<string, string> HeaderDict;

| ocal class WsConnectionl nfo extends Connectionlnfo
{
Header Di ct headers;
}
}

nmodul e | ceSSL
{
I ocal class Connectionlnfo extends Ice:: Connectionlnfo
{
string cipher;
Ice::StringSeq certs;
bool verified;

}

nmodul e | ceBT

I ocal class Connectionlnfo extends Ice:: Connectionlnfo

string | ocal Address =
int | ocal Channel = -1;
string renoteAddress =
int renoteChannel = -1;
string uuid ="";

.
1

nodul e | cel AP

local class Connectionlnfo extends Ice:: Connectionlnfo

{
{
}
}
{
{
}
}

string namne;

string manufacturer;
string nodel Nunber;
string firmareRevision;
string hardwar eRevi si on;
string protocol;

As indicated in the Slice definition, a connection is a local interface, similar to a communicator or an object adapter. A connection therefore is only usable
within the process and cannot be accessed remotely.

The Connect i on interface supports the following operations:

voi d cl ose(Connecti onC ose node)
Explicitly closes the connection using the given closure mode.

oj ect* createProxy(ldentity id)
Creates a special proxy that only uses this connection. This operation is primarily used for bidirectional connections.

voi d set Adapt er (Obj ect Adapt er adapter)
Associates this connection with an object adapter to enable a bidirectional connection.

bj ect Adapt er get Adapter ()
Returns the object adapter associated with this connection, or nil if no association has been made.

Endpoi nt get Endpoi nt ()
Returns an Endpoi nt object.

voi d flushBat chRequests()
Flushes any pending batch requests for this connection.

voi d set O oseCal | back(C oseCal | back cal | back)
Associates a callback with this connection that is invoked whenever the connection is closed. Passing a nil value clears the current callback.

voi d set Heart beat Cal | back(Hear t beat Cal | back cal | back)
Associates a callback with this connection that is invoked whenever the connection receives a heartbeat message. Passing a nil value clears the
current callback.

voi d set ACM optional (1) int timeout, optional (2) ACMO ose close, optional (3) ACMieartbeat heartbeat)
Configures Active Connection Management settings for this connection. All arguments are optional, therefore you can change some of the
settings while leaving the others unaffected. Refer to your language mapping for more details on optional parameters.

ACM get ACM)
Returns the connection's current settings for Active Connection Management.

string type()
Returns the connection type as a string, such as "t cp".

int tinmeout()
Returns the timeout value used when the connection was established.

string toString()
Returns a readable description of the connection.

https://doc.zeroc.com/display/IceMatlab/Local+Types
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts

® Connectionlnfo getlnfo()

This operation returns a Connect i onl nf o instance. . Note that the object returned by get | nf o implements a more derived interface,
depending on the connection type. You can down-cast the returned class instance and access the connection-specific information according to
the type of the connection.

The i ncom ng member of the Connect i onl nf o instance is true if the connection is an incoming connection and false, otherwise. If i ncomi ng i
s true, adapt er Nane provides the name of the object adapter that accepted the connection. The connect i onl d member contains the identifier
set with the proxy i ce_connect i onl d method.

The under | yi ng member contains the underlying transport information if the connection uses a transport that delegates to an underlying
transport. For example, the SSL transport delegates to the TCP transport so the under | yi ng data member of an SSL connection

information is set to a TCPConnect i onl nf o instance. For a WSS connection, get | nf o returns a WsConnect i onl nf o instance whose under |
yi ng data member is setto an | ceSSL: : Connect i onl nf o whose under | yi ng data member is set to a TCPConnect i onl nf o.

void setBufferSize(int rcvSize, int sndSize)
Sets the connection buffer receive and send sizes.

voi d throwException()

Throws an exception indicating the reason for connection closure. For example, Cl oseConnect i onExcept i on is raised if the connection was
closed gracefully by the remote peer, whereas Connect i onManual | yCl osedExcept i on is raised if the connection was manually closed
locally by the application. This operation does nothing if the connection is not yet closed.

Back to Top

Flushing Batch Requests for a Connection

The f | ushBat chRequest s operation blocks the calling thread until any batch requests that are queued for a connection have been successfully written
to the local transport. To avoid the risk of blocking, you can also invoke this operation asynchronously.

Since batch requests are inherently oneway invocations, the async f | ushBat chRequest s method does not support a request callback. However, you
can use the exception callback to handle any errors that might occur while flushing, and the sent callback to receive notification that the batch request has
been flushed successfully.

For example, the code below demonstrates how to flush batch requests asynchronously in C++:

C++11

voi d flushConnection(lce:: ConpressBatch conpressBatch, const std::shared_ptr<Ice:: Connecti on>& conn)

{

C++98

/] std::future version also available
conn->f | ushBat chRequest sAsync(conpr essBat ch,

[1(std::exception_ptr) { cout << "Flush failed" << endl; },
[1(bool) { cout << "Batch sent" << endl; });

class FlushCall back : public IceUtil:: Shared

{
public:
voi d exception(const |ce::Exception& ex)
{
cout << "Flush failed: " << ex << endl;
}
voi d sent (bool sent Synchronously)
{
cout << "Batch sent!" << endl;
}
b

typedef IceUtil::Handl e<Fl ushCal | back> Fl ushCal | backPtr;

voi d flushConnection(lce:: ConpressBatch conpressBatch, const Ice:: ConnectionPtré& conn)

{
Fl ushCal | backPtr f = new Fl ushCal | back;

I ce:: Cal |l back_Connecti on_fl ushBat chRequestsPtr cb =
I ce:: newCal | back_Connecti on_f | ushBat chRequest s(
f, &FlushCal | back:: exception, &FlushCallback::sent);
conn->begi n_f | ushBat chRequest s(conpr essBat ch, cb);

For more information on asynchronous invocations, please see the relevant language mapping chapter.

Back to Top

The Endpoi nt Interface

The Connect i on: : get Endpoi nt operation returns an interface of type Endpoi nt :

Slice

nodul e | ce

{

I
w e

const short TCPEndpoi nt Type
const short UDPEndpoi nt Type
const short WBEndpoi nt Type = 4;
const short WSSEndpoi nt Type =
const short BTEndpoi nt Type = 6;

const short BTSEndpoi nt Type = 7;
const short i APEndpoi nt Type = 8;
const short i APSEndpoi nt Type = 9;

-

local class Endpointlnfo
{
Endpoi nt 1 nfo underl ying;
int timeout;
bool conpress;
short type();
bool datagran();
bool secure();

}

local interface Endpoint

{
Endpoi ntInfo getlnfo();

string toString();
}

I ocal class |PEndpointlnfo extends Endpointlnfo

{

string host;

int port;
string sourceAddress;
}
I ocal class TCPEndpointlnfo extends |PEndpointinfo {};

I ocal class UDPEndpointlnfo extends |PEndpointlnfo

{
byte protocol Myj or;
byt e protocol M nor;
byt e encodi ngMaj or;
byt e encodi ngM nor;
string ntastlnterface;
int ncastTtl;
}
I ocal class WSEndpoi ntl nfo extends Endpointlnfo
{
string resource;
}
| ocal class OpaqueEndpoi ntlnfo extends Endpointlnfo
{
I ce: : Encodi ngVer si on rawEncodi ng;
I ce:: ByteSeq rawBytes;
}
}
nodul e | ceSSL
{
local class Endpointlnfo extends Ice::Endpointinfo {};
}

nodul e | ceBT

{
local class Endpointlnfo extends Ice::Endpointlnfo
{
string addr;
string uuid;
}
}
nmodul e | cel AP
{
I ocal class Endpointlnfo extends |ce:: Endpointlnfo
{
string manufacturer;
string nodel Nunber;
string nane;
string protocol;
}
}

The get | nf o operation returns an Endpoi nt | nf o instance. Note that the object returned by get | nf o implements a more derived interface, depending
on the endpoint type. You can down-cast the returned class instance and access the endpoint-specific information according to the type of the endpoint, as
returned by the t ype operation.

The t i meout member provides the timeout in milliseconds. The conpr ess member is true if the endpoint uses compression (if available). The dat agr am
operation returns true if the endpoint is for a datagram transport, and the secur e operation returns true if the endpoint uses SSL.

The under | yi ng member contains the underlying endpoint information if the transport delegates to an underlying transport. For example, the SSL
transport uses the TCP transport so the under | yi ng data member of an SSL endpoint information is set to a TCPEndpoi nt | nf o instance. For a WSS
endpoint, get | nf o returns a WBEndpoi nt | nf o instance whose under | yi ng data member is setto an | ceSSL: : Endpoi nt | nf o whose under | yi ng
data member is set to a TCPEndpoi nt | nf o.

The derived classes provide further detail about the endpoint according to its type.

Back to Top

https://doc.zeroc.com/display/IceMatlab/Connection+Timeouts
https://doc.zeroc.com/display/IceMatlab/Protocol+Compression
https://doc.zeroc.com/display/IceMatlab/Datagram+Invocations
https://doc.zeroc.com/display/IceMatlab/IceSSL

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrecognized by the Ice run time. In this situation, Ice preserves the endpoint
in its encoded (opaque) form so that the proxy remains intact, but Ice ignores the endpoint for all connection-related activities. Preserving the endpoint
allows an application to later forward that proxy with all of its original endpoints to a different program that might support the endpoint type in question.

Although a connection will never return an opaque endpoint, it is possible for a program to encounter an opaque endpoint when iterating over the
endpoints returned by the proxy method i ce_get Endpoi nt s.

As a practical example, consider a program for which the IceSSL plug-in is not configured. If this program receives a proxy containing an SSL endpoint, Ice
treats it as an opaque endpoint such that calling get | nf o on the endpoint object returns an instance of OpaqueEndpoi nt | nf o.

Note that the t ype operation of the OpaqueEndpoi nt | nf o object returns the actual type of the endpoint. For example, the operation returns the value 2
if the object encodes an SSL endpoint. As a result, your program cannot assume that an Endpoi nt | nf o object whose type is 2 can be safely down-cast
to | ceSSL: : Endpoi nt | nf o; if the IceSSL plug-in is not configured, such a down-cast will fail because the object is actually an instance of OpaqueEndpo
intlnfo.

Back to Top

Client-Side Connection Usage

Clients obtain a connection by using one of the proxy methods i ce_get Connecti on ori ce_get CachedConnect i on. If the proxy does not yet have a
connection, the i ce_get Connect i on method immediately attempts to establish one. As a result, the caller must be prepared for this method to block and
raise connection failure exceptions. (Use the asynchronous version of this method to avoid blocking.) If the proxy denotes a collocated object and
collocation optimization is enabled, calling i ce_get Connect i on returns null.

If you wish to obtain the proxy's connection without the potential for triggering connection establishment, call i ce_get CachedConnect i on; this method
returns null if the proxy is not currently associated with a connection or if connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection from a proxy and print its type:

C++11
auto proxy = ...
try
{
auto conn = proxy->i ce_get Connection();
i f(conn)
{
cout << conn->type() << endl;
}
el se
{
cout << "collocated" << endl;
}
}
catch(const Ice::Local Exception& ex)
{
cout << ex << endl;
}
C++98
lce::bjectPrx proxy = ...
try
{
I ce:: ConnectionPtr conn = proxy->i ce_get Connection();
i f(conn)
{
cout << conn->type() << endl;
}
el se
{
cout << "collocated" << endl;
}
}
catch(const Ice:: Local Exception& ex)
{

cout << ex << endl;

}

https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/display/IceMatlab/Proxy+Methods
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment#ConnectionEstablishment-error
https://doc.zeroc.com/display/IceMatlab/Collocated+Invocation+and+Dispatch

Back to Top »

Server-Side Connection Usage

Servers can access a connection via the con member of the | ce: : Cur r ent parameter passed to every operation. For collocated invocations, con has a
nil value.

For example, this Java code shows how to invoke t oSt r i ng on the connection:

Java

public int add(int a, int b, Current current)

{
if(current.con != null)
{
System out . println("Request received on connection:\n" + current.con.toString());
}
el se
{
Systemout. println("collocated invocation");
}
return a + b;
}

Although the mapping for the Slice operation t oSt r i ng results in a Java method named _t oSt ri ng, the Ice run time implements t oSt ri ng to return
the same value.

Back to Top »

Closing a Connection

Applications should rarely need to close a connection manually, but those that do must be aware of its implications. The Connect i onCl ose enumeration
defines three closure modes:

® Forcefully
® Gracefully
® Gracefully with wait

Forcefully

A forceful closure causes the peer to receive a Connect i onLost Except i on.

A client must use caution when forcefully closing a connection. Any outgoing requests that are pending on the connection when cl ose is invoked will fail
with a Connect i onManual | yC osedExcept i on. Furthermore, requests that fail with this exception are not automatically retried.

In a server context, forceful closure can be useful as a defense against hostile clients.

Gracefully

This mode initiates graceful connection closure and causes the local Ice run time to send a Cl oseConnect i on message to the peer. Any outgoing
requests that are pending on the connection when cl ose is invoked will fail with a Connect i onManual | yCl osedExcept i on. Furthermore, requests
that fail with this exception are not automatically retried.

In a server context, closing a connection gracefully causes Ice to discard any subsequent incoming requests; these requests should eventually be retried
automatically when the client receives a O oseConnect i on message. The Ice run time in the server does not send the O oseConnect i on message
until all pending dispatched requests have completed.

@ After invoking cl ose(Cl oseG acef ul | y), Ice considers the connection to be in a closing state until the remote peer completes its part of the
graceful connection closure process. The connection could remain in this state for some time if the peer has no thread pool threads available to
process the Cl oseConnect i on message, and this can prevent operations such as Conmuni cat or : : dest r oy from completing in a timely
manner. Ice uses a timeout to limit the amount of time it waits for a connection to be closed properly. Referto | ce. Overri de. C oseTi nmeout
for more information.

https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout

Gracefully with Wait

In a client context, this mode waits until all pending requests complete before initiating graceful closure. The call to cl ose can block indefinitely until the
pending requests have completed.

In a server context, closing a connection gracefully causes Ice to discard any subsequent incoming requests; these requests should eventually be retried
automatically when the client receives a O oseConnect i on message. The Ice run time in the server does not send the Cl oseConnect i on message
until all pending dispatched requests have completed.

(D After invoking cl ose(Cl oseG aceful | yW t hWai t), Ice considers the connection to be in a closing state until the remote peer completes its
part of the graceful connection closure process. The connection could remain in this state for some time if the peer has no thread pool threads
available to process the Cl oseConnect i on message, and this can prevent operations such as Cormuni cat or : : dest r oy from completing in
a timely manner. Ice uses a timeout to limit the amount of time it waits for a connection to be closed properly. Referto | ce. Overri de.

Cl oseTi neout for more information.

Back to Top »

See Also

The Current Object
Automatic Retries
Connection Establishment
Connection Closure
Bidirectional Connections
lceSSL

IceBT

IcelAP

pe

Previous

https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/display/IceMatlab/The+Current+Object
https://doc.zeroc.com/display/IceMatlab/Automatic+Retries
https://doc.zeroc.com/display/IceMatlab/Connection+Establishment
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/display/IceMatlab/Bidirectional+Connections
https://doc.zeroc.com/display/IceMatlab/IceSSL
https://doc.zeroc.com/display/IceMatlab/IceBT
https://doc.zeroc.com/display/IceMatlab/IceIAP
https://doc.zeroc.com/display/IceMatlab/Active+Connection+Management
https://doc.zeroc.com/display/IceMatlab/Connection+Closure
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout
https://doc.zeroc.com/pages/viewpage.action?pageId=18263652#Ice.Override.*-Ice.Override.CloseTimeout

	Using Connections

